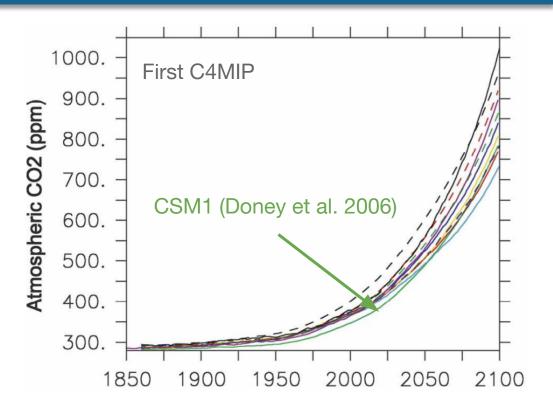
CESM emission-driven run tutorial Biogeochemistry working group winter meeting, Feb 26, 2025 Co-chairs: Abby Swann, Gretchen Keppel-Aleks, Kristen Krumhardt Special thanks to Peter Lawrence, Mike Levy, Nikki Lovenduski, Charlie Koven


Goals of this tutorial:

- Learn about how to set up an emission-driven CESM run
- Learn about forcing
- Analysis techniques that can be applied to emission-driven runs

Agenda

- 1:30 ~1:45: Overview of tutorial in the Main Seminar room
- 1:45: Independent work: set up and run a 1 month fully-coupled emission-driven CESM2 run
- [break at 2:30 in Damon Room]
- 2:45 4:30 Independent work on analysis notebooks
 - Creating emission files
 - Analysis notebooks for ocean
 - Analysis land
 - Atmosphere


Join the BGCWG mailing list

Why are we doing this?

The BGCWG was established in 1998 to create emissions-driven (aka fully coupled carbon cycle) capability - "The Flying Leap"

CESM (and predecessors) have been able to do this since CMIP3!

Friedlingstein et al. 2006

Why are we doing this?

CMIP7 will be (more) emissions-driven!

We want more people to be familiar with running the model in this configuration

Geosci. Model Dev., 17, 8141-8172, 2024 https://doi.org/10.5194/gmd-17-8141-2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

The need for carbon-emissions-driven climate projections in CMIP7

Benjamin M. Sanderson¹, Ben B. B. Booth², John Dunne³, Veronika Eyring^{4,5}, Rosie A. Fisher¹, Pierre Friedlingstein⁶, Matthew J. Gidden^{7,20}, Tomohiro Hajima⁸, Chris D. Jones^{2,15}, Colin G. Jones¹⁴, Andrew King⁹, Charles D. Koven¹⁰, David M. Lawrence¹¹, Jason Lowe², Nadine Mengis¹², Glen P. Peters¹, Joeri Rogelj^{7,13}, Carl-Friedrich Schleussner^{20,21}, Roland Séférian²², Bjørn H. Samset¹, Detlef van Vuuren²³, and Sönke Zaehle²⁴

https://doi.org/10.5194/egusphere-2024-3874 Preprint, Discussion started: 20 December 2024 © Author(s) 2024, CC BY 4.0 License.

An evolving Coupled Model Intercomparison Project phase 7 (CMIP7) and Fast Track in support of future climate assessment

John P. Dunne¹, Helene T. Hewitt², Julie Arblaster³, Frédéric Bonou⁴, Olivier Boucher⁵, Tereza Cavazos⁶, Paul J. Durack⁷, Birgit Hassler⁸, Martin Juckes⁹, Tomoki Miyakawa¹⁰, Matt Mizielinski², Vaishali Naik¹, 5 Zebedee Nicholls¹¹, Eleanor O'Rourke¹², Robert Pincus¹³, Benjamin M. Sanderson¹⁴, Isla R. Simpson¹⁵, Karl E. Taylor⁷

for the Coupled Model Intercomparison Project (CMIP) is to coordinate community based efforts to ly climate science questions and facilitate delivery of relevant multi-model simulations through shared benefit of the physical understanding, vulnerability, impacts and adaptations analysis, national and assessments, and society at large. From its origins as a punctuated phasing of climate model evaluation, CMIP is now evolving through coordinated and federated planning into a more continuous Chris Smith^{2,7,14}, Abigail C. Snyder¹⁷, Isla R. Simpson¹¹, Abigail L. S. Swann¹⁶, Claudia Tebaldi¹⁷, Tatiana Ilyina^{18,19}, ogram. The activity is supported by the design of experimental protocols, an infrastructure that supports and solike Leaving access, and the phased delivery or "fast track" of climate information for national and international climate

> assessments informing decision making. Key to these CMIP7 efforts are: an expansion of the Diagnostic, Evaluation and Characterization of Klima (DECK) to include historical, effective radiative forcing, and focus on CO₂-emissions-driven

> experiments; sustained support for community MIPs; periodic updating of historical forcings and diagnostics requests; and a collection of experiments drawn from community MIPs to support research towards the 7th Intergovernmental Panel on

What's unique about emissions-driven mode?

- CO₂ emissions are specified
- CO₂ concentrations are fully prognostic, resulting from the balance of sources and sinks of carbon and atmospheric transport
- CO₂ is traced in the atmosphere and influenced by atmospheric transport resulting
 CO₂ field has dimensions of (lat, lon, height, time)
- Land BGC and Ocean BGC are active to produce time varying sinks and sources

Checkout and run 1mo emissions-driven

Clone the Git repository:

git clone https://github.com/NCAR/CESM-emission-driven-run-tutorial.git

The shell script that sets up a HOPE-like emissions-driven run: set_up_HOPE_historical.sh

- Check out CESM2.1.5 (version used for HOPE runs)
- Create a new historical case (BHIST with adjusted emissions), branching off PI control
- Set up and do a 1-month run

Overview of analysis notebooks

- Can be run on Jupyterhub: https://jupyterhub.hpc.ucar.edu
- HOPE output (timeseries files) is located at: /glade/campaign/cesm/community/bgcwg/HOPE
- Jupyter notebooks for land, atmosphere, and ocean components.
- Notebook that shows how to create emission forcing files.
- These are just a starting point, many more notebooks could be added please let us know your ideas!

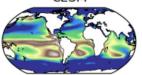
Ocean analysis notebooks

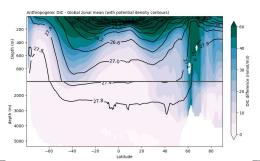
Ocean carbon inventories:

- ocean_carbon_SSP245.ipynb
- Totals up all the carbon in the CESM ocean and makes a table showing inventories for 2015 and 2100

Ocean pCO2, model-observations comparison:

- ocean_monthly_pCO2.ipynb
- Compares monthly climatology of ocean surface pCO2 to observation-based dataset

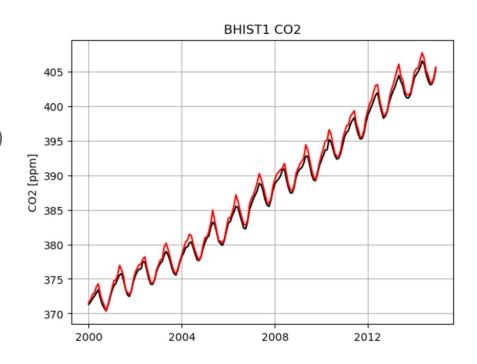

Zonal means of anthropogenic carbon in the ocean


ocean_anthro_carbon_zonal.ipynb

	carbon pool	quantity 2015	quantity 2100	unit
0	Dissolved inorganic carbon	37233.60000	37479.30000	Pg C
1	Refractory dissolved organic carbon	361.57800	362.15700	Pg C
2	Semi-labile dissolved organic carbon	29.42600	30.10500	Pg C
3	Mesozooplankton biomass	0.41400	0.41200	Pg C
4	Microzooplankton biomass	0.23300	0.23300	Pg C
5	Diatom biomass	0.26100	0.25600	Pg C
6	Small phytoplankton biomass	0.19600	0.19600	Pg C
7	Coccolithophore biomass	0.03700	0.03500	Pg C
8	Diazotroph biomass	0.00986	0.00997	Pg C
9	Coccolithophore CaCO ₃	0.01398	0.01217	Pg C
10	Total carbon in ocean	37625.76000	37872.67000	Pg C

Landschützer product

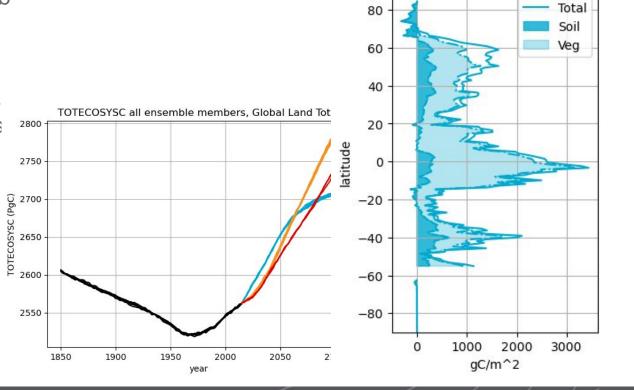
CESM



Atmosphere notebook

Atmospheric CO₂ timeseries:

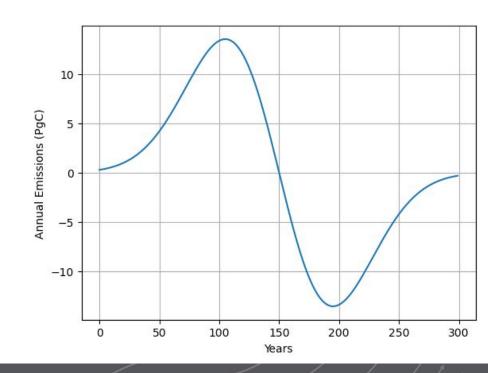
- atmosphericCO2.ipynb
- Plot, detrend, and calculate a mean annual cycle for CO₂ at a specific pressure level
- Calculate the total column integral (X_{CO2}) observed from space


Ideas to expand notebook: multi-site comparisons, comparisons against CO₂ observations, regress hemispheric CO₂ contrast against emissions

Land notebook

Land Carbon:

- land_carbon_analysis.ipynb
- Global maps
- Global mean timeseries
- Regional mean timeseries
- Partitioning between pools
- Partitioning between fluxes


Carbon partitioning, Zonal Land Mean

Custom Emissions Files

Make_idealized_edriven_scenario_forcing file.ipynb

It's possible to create your own emissions trajectory files to use in emissions-driven configuration

This notebook makes the emissions trajectory from Koven et al. 2023, but can be modified for making other emissions pathways

Proposed Analysis Ideas

- Effect of fire emissions variability vs. prescribed fire emissions
- CO₂ feedbacks
- Permafrost carbon behavior under low emissions scenarios and across ensemble members

Questions after you leave today?

=> <u>discussCESM forum</u> has a for emissions driven configurations!

Join the BGCWG mailing list