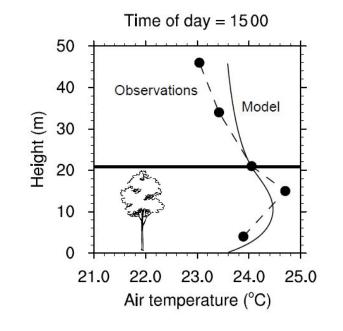

Thoughts on modeling plant canopies: Insights from the Canopy Horizontal Array Turbulence Study (CHATS)

Gordon Bonan, Sean Burns & Edward Patton NSF National Center for Atmospheric Research Boulder, Colorado, USA

CESM Land Model Working Group 24 February 2025


NCAR is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977

Multilayer canopy

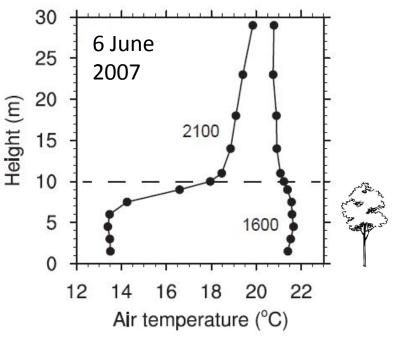
The physics and physiology of the multilayer canopy are simpler and more consistent with theory (and directly observable) than is the CLM5/6 big-leaf canopy (with many ad-hoc parameterizations and much technical debt), and the model enables new science

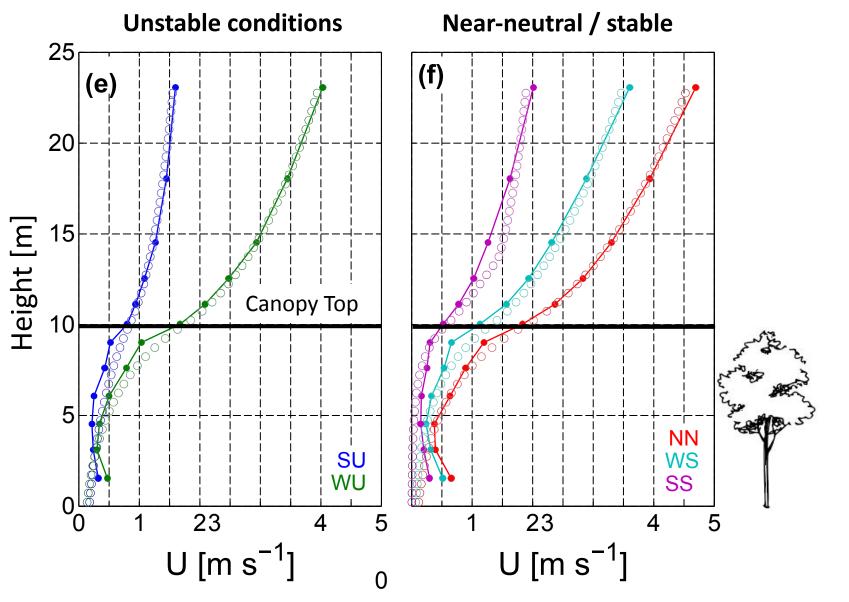
Bonan, Williams et al. (2014) *Geosci. Model Dev.*, 7, 2193-2222 Bonan, Patton, et al. (2018) *Geosci. Model Dev.*, 11, 1467-1496 Bonan, Patton, Finnigan, et al. (2021) *Agric. For. Meteorol.*, 306, 108435 Bonan, Burns & Patton (2025), in prep.

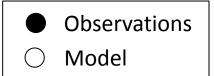
University of Michigan Biological Station

Observational dataset

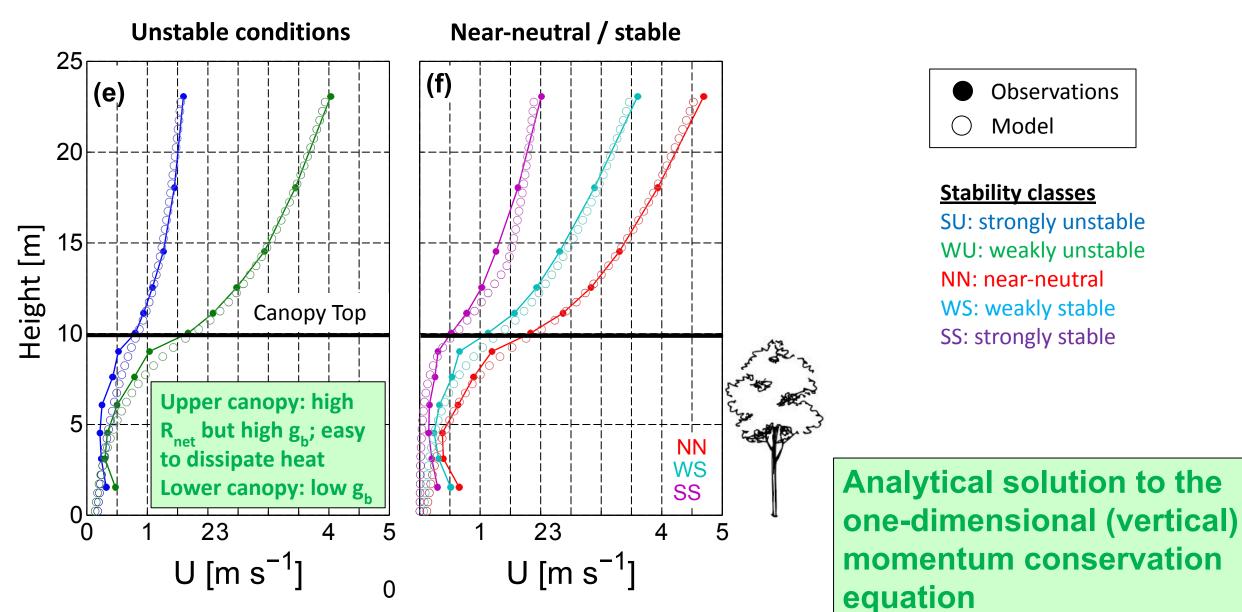
THE CANOPY HORIZONTAL ARRAY TURBULENCE STUDY


BY EDWARD G. PATTON, THOMAS W. HORST, PETER P. SULLIVAN, DONALD H. LENSCHOW, STEVEN P. ONCLEY, WILLIAM O. J. BROWN, SEAN P. BURNS, ALEX B. GUENTHER, ANDREAS HELD, THOMAS KARL, SHANE D. MAYOR, LUCIANA V. RIZZO, SCOTT M. SPULER, JIELUN SUN, ANDREW A. TURNIPSEED, EUGENE J. ALLWINE, STEVEN L. EDBURG, BRIAN K. LAMB, RONI AVISSAR, RONALD J. CALHOUN, JAN KLEISSL, WILLIAM J. MASSMAN, KYAW THA PAW U, AND JEFFREY C. WEIL


Patton et al. (2011) BAMS, 92, 593-611


mid-March – mid-June 2007

Wind speed (May 2007)



Stability classes

SU: strongly unstable WU: weakly unstable NN: near-neutral WS: weakly stable SS: strongly stable

Bonan, Burns & Patton (unpublished)

Wind speed (May 2007)

Bonan, Burns & Patton (unpublished)

CLM5/6 canopy physics: wind speed in canopy

1984

 $U_{af} = u_{*}$

"The assumption that $U_{af} = u_*$ in general is of adequate accuracy for the present model, considering the uncertainty in the other aspects of the foliage conductance."

Dickinson (1984) in *Climate Processes and Climate Sensitivity* (Hansen & Takahashi, eds.; AGU)

2025: CLM6

CLM6 has a bulk wind speed in the canopy (uaf) that is equal to u_* . uaf is used to calculate leaf boundary layer conductance.

Introduces an under-canopy wind speed (uuc)

! empirical undercanopy wind speed
uuc(p) = min(0.4_r8,(0.03_r8*um(p)/ustar(p)))

CLM5/6 canopy physics: wind speed in canopy

1984

 $U_{af} = u_{*}$

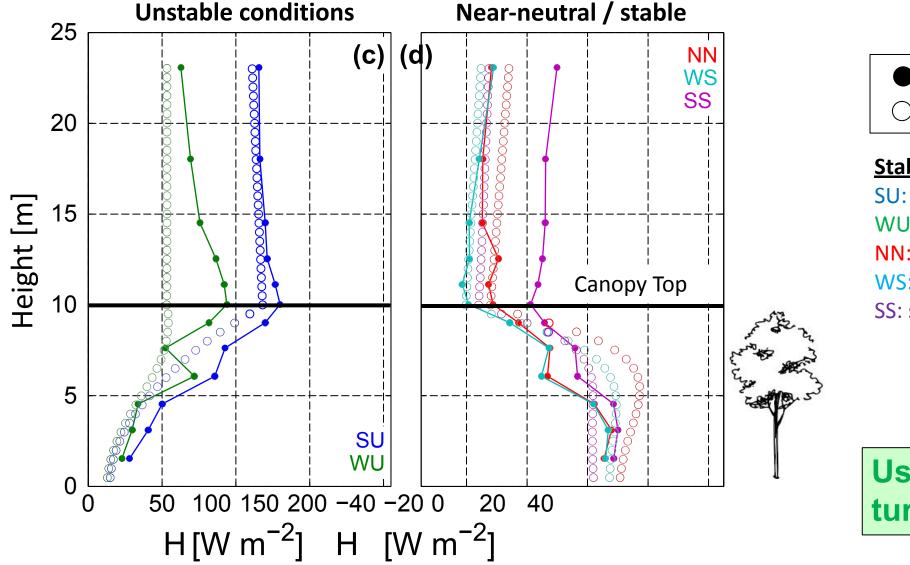
"The assumption that $U_{af} = u_*$ in general is of adequate accuracy for the present model, considering the uncertainty in the other aspects of the foliage conductance."

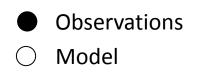
Dickinson (1984) in *Climate Processes and Climate Sensitivity* (Hansen & Takahashi, eds.; AGU)

CLM6: multiple wind speeds

uaf: u_{*} is a measure of turbulence not wind uuc: introduced with biomass heat storage u10 (10-m wind) and fire spread (?)

2025: CLM6

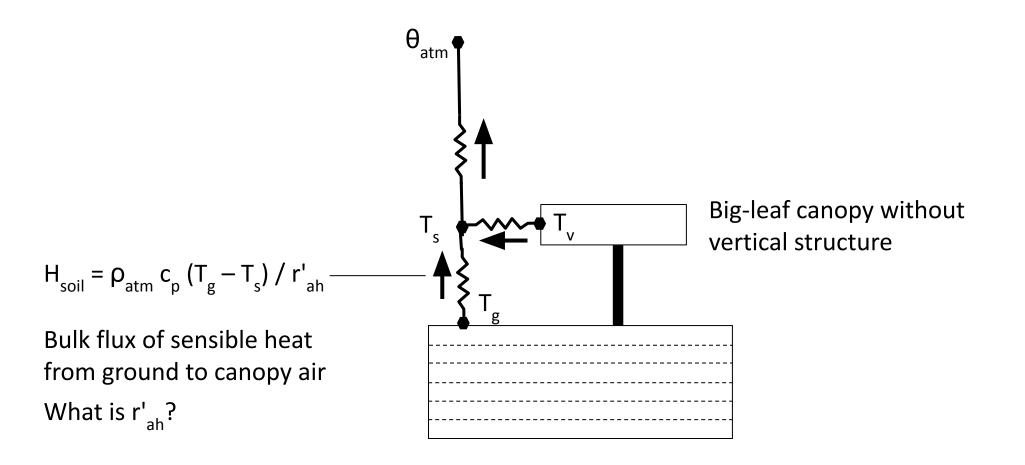

7


CLM6 has a bulk wind speed in the canopy (uaf) that is equal to u_* . uaf is used to calculate leaf boundary layer conductance.

Introduces an under-canopy wind speed (uuc)

```
! empirical undercanopy wind speed
uuc(p) = min(0.4_r8,(0.03_r8*um(p)/ustar(p)))
```

Sensible heat flux


Stability classes

SU: strongly unstable WU: weakly unstable NN: near-neutral WS: weakly stable SS: strongly stable

Uses first-order turbulence closure

Bonan, Burns & Patton (unpublished)

CLM5/6 perspective of the land surface

1984

Under-canopy H

$$H_{g} = \rho_{a} c_{p} C_{D} u_{af} (T_{g} - T_{af})$$

Dickinson (1984) in *Climate Processes and Climate Sensitivity* (Hansen & Takahashi, eds.; AGU)

2025: CLM5/6

$$H_{soil} = -\rho_{atm}C_p \frac{(T_s - T_1)}{r'_{ah}} \quad (2.5.90)$$

$$r'_{ah} = r'_{aw} = \frac{1}{C_s U_{av}} \quad (2.5.116)$$

https://escomp.github.io/ctsm-docs/versions/release-clm5 .0/html/tech_note/index.html

1984

<u>Under-canopy H</u>

 $H_{g} = \rho_{a} c_{p} C_{D} u_{af} (T_{g} - T_{af})$

Dickinson (1984) in *Climate Processes and Climate Sensitivity* (Hansen & Takahashi, eds.; AGU)

2025: CLM5/6

$$H_{soil} = -\rho_{atm}C_p \frac{(T_s - T_1)}{r'_{ah}} \quad (2.5.90)$$
$$r'_{ah} = r'_{aw} = \frac{1}{C_s U_{av}} \quad (2.5.116)$$

Model **Implementation** Year $C_{c} = 0.004$ 1993 BATS1e $C_s = 0.004$ (dense canopy) 2004 CLM3 \rightarrow bare soil as PAI = 0 C modified for under-2010 CLM4 canopy stability C_c under-canopy stability 2018 CLM5 removed Replace uaf with uuc 2025 CLM6 (biomass heat storage)

https://escomp.github.io/ctsm-docs/versions/release-clm5 .0/html/tech_note/index.html

1984

Under-canopy H

 $H_{g} = \rho_{a} c_{p} C_{D} u_{af} (T_{g} - T_{af})$

Dickinson (1984) in *Climate Processes and Climate Sensitivity* (Hansen & Takahashi, eds.; AGU)

2025: CLM5/6

$$H_{soil} = -\rho_{atm} C_p \frac{(T_s - T_1)}{r'_{ah}} \quad (2.5.90)$$
$$r'_{ah} = r'_{aw} = \frac{1}{C_s U_{av}} \quad (2.5.116)$$

https://escomp.github.io/ctsm-docs/versions/release-clm5 .0/html/tech_note/index.html

2025: CLM6

uaf(p) = um(p)*sqrt(1._r8/(ram1(p)*um(p)))

```
! empirical undercanopy wind speed
uuc(p) = min(0.4_r8,(0.03_r8*um(p)/ustar(p)))
```

```
if (use_biomass_heat_storage) then
  ! use uuc for ground fluxes (keep uaf for canopy terms)
  rah(p,below_canopy) = 1._r8/(csoilcn*uuc(p))
```

else

```
rah(p,below_canopy) = 1._r8/(csoilcn*uaf(p))
```

endif

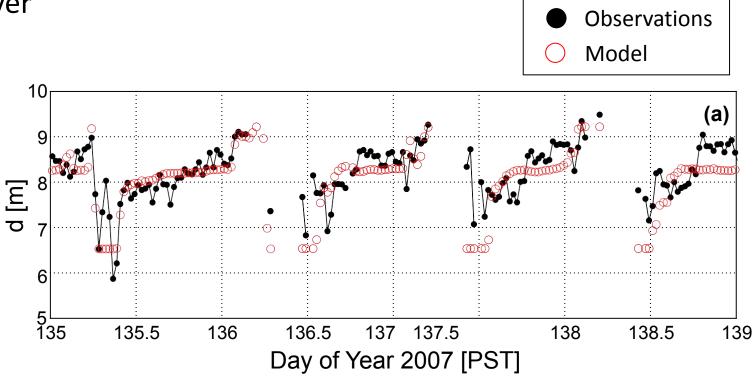
2025: CLM6

- Conceptual framework is unchanged over 40+ years
- C_s and *u* change as needed for a particular model configuration
- uuc changes fluxes in a way unrelated to the storage of heat in biomass. It changes the under-canopy turbulence.

```
uaf(p) = um(p)*sqrt( 1._r8/(ram1(p)*um(p)) )
```

```
! empirical undercanopy wind speed
uuc(p) = min(0.4_r8,(0.03_r8*um(p)/ustar(p)))
```

```
if (use_biomass_heat_storage) then
  ! use uuc for ground fluxes (keep uaf for canopy terms)
  rah(p,below_canopy) = 1._r8/(csoilcn*uuc(p))
```


else

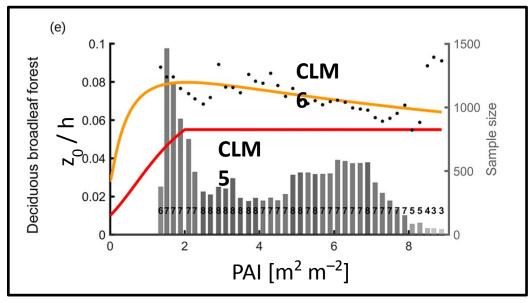
```
rah(p,below_canopy) = 1._r8/(csoilcn*uaf(p))
```

endif

Canopy turbulence: $z_0 \& d$

- $\circ z_0$ is an empirical parameter used in MOST
- Multilayer canopy replaces z₀ with observable canopy-imposed parameters (e.g., leaf drag coefficient)
- *d* emerges from roughness sublayer theory and depends on flow
- Varies by 3 m in a 10-m canopy!

CLM5/6 canopy physics


Roughness length (z_0) and displacement height (d)

Treated as canopy parameters: vary with h and PAI

CLM5: Zeng & Wang (2007)

CLM6: Meier et al. (2022) \rightarrow Raupach (1994) fitted to FLUXNET data

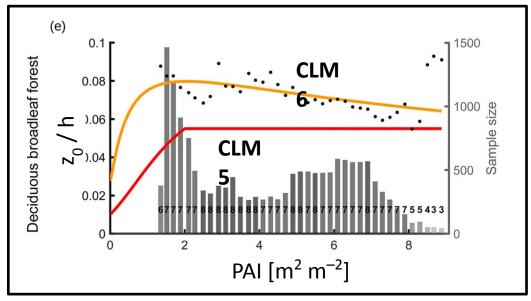
FATES: passes z₀ and d to CLM: f(h) & CLM6 adjusts for PAI using Zeng & Wang (2007) as in CLM5

Meier et al. (2022) Geosci. Model Dev., 15, 2365–2393

CLM5/6 canopy physics

Roughness length (z_0) and displacement height (d)

Treated as canopy parameters: vary with h and PAI


CLM5: Zeng & Wang (2007)

CLM6: Meier et al. (2022) \rightarrow Raupach (1994) fitted to FLUXNET data

FATES: passes z₀ and d to CLM: f(h) & CLM6 adjusts for PAI using Zeng & Wang (2007) as in CLM5

Technical debt:

5 subroutines in 4 modules6 variables in two data types

Meier et al. (2022) Geosci. Model Dev., 15, 2365–2393

CLM5/6 canopy physics

Roughness length (z_0) and displacement height (d)

Treated as canopy parameters: vary with h and PAI

CLM5: Zeng & Wang (2007)

CLM6: Meier et al. (2022) \rightarrow Raupach (1994) fitted to FLUXNET data

FATES: passes z₀ and d to CLM: f(h) & CLM6 adjusts for PAI using Zeng & Wang (2007) as in CLM5

Technical debt:

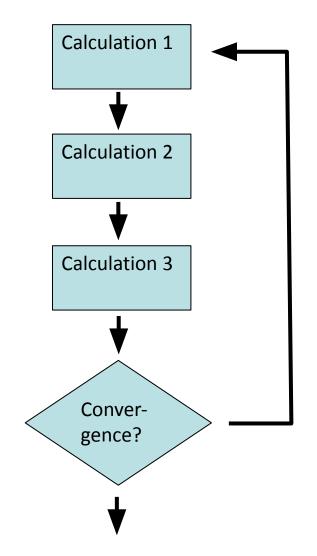
5 subroutines in 4 modules6 variables in two data types

CLM5/6 and FATES treat z_0 and d as canopy structural parameters not as turbulent flow parameters

Leads to scientific debt in how z₀ and d are used throughout CLM, e.g. forc_hgt = z_{atm} + z₀ + d

Canopy physics: a complex system of equations

Fluxes depend on canopy states but canopy states depend on fluxes:


• $g_s = f(T_{leaf})$ and $T_{leaf} = f(g_s)$ • $L = f(H, \lambda E)$ and $H = f(L), \lambda E = f(L)$

The physiological state of a plant community substantially influences the microclimate within it; in turn, the microclimate influences the physiological state, so that neither is independent of the other.

Finnigan & Raupach (1987) in *Stomatal Function* (Zeiger, Farquhar & Cowan, eds.; Stanford Univ. Press)

CLM5/6 canopy physics: a deep dive

CLM5/6 use a multistep iterative solution for fluxes/temperature

Up to 40 iterations (standard) and 3 iterations (fast)

1. Initial values for canopy air temperature and specific humidity are obtained from

$$T_{s} = \frac{T_{g} + \theta_{atm}}{2}$$
(2.5.136)
$$q_{s} = \frac{q_{g} + q_{atm}}{2}.$$
(2.5.137)

- 2. An initial guess for the wind speed V_a is obtained from (2.5.24) assuming an initial convective velocity $U_c = 0 \text{ m s}^{-1}$ for stable conditions ($\theta_{v,atm} - \theta_{v,s} \ge 0$ as evaluated from (2.5.50)) and $U_c = 0.5$ for unstable conditions ($\theta_{v,atm} - \theta_{v,s} < 0$).
- 3. An initial guess for the Monin-Obukhov length L is obtained from the bulk Richardson number using equation and (2.5.46) and (2.5.48).
- 4. Iteration proceeds on the following system of equations:
- 5. Friction velocity u_{*} ((2.5.32), (2.5.33), (2.5.34), (2.5.35))
- 6. Ratio $\frac{\theta_*}{\theta_{atm}-\theta_s}$ ((2.5.37) , (2.5.38), (2.5.39), (2.5.40)) 7. Ratio $\frac{q_*}{q_{stm}-q_s}$ ((2.5.41), (2.5.42), (2.5.43), (2.5.44))
- 8. Aerodynamic resistances r_{am} , r_{ah} , and r_{aw} ((2.5.55), (2.5.56), (2.5.57))
- 9. Magnitude of the wind velocity incident on the leaves U_{av} ((2.5.117))
- 10. Leaf boundary layer resistance r_b ((2.5.136))
- 11. Aerodynamic resistances $r^{'}_{ah}$ and $r^{'}_{aw}$ ((2.5.116))
- 12. Sunlit and shaded stomatal resistances r_s^{sun} and r_s^{sha} (Chapter 2.9)
- 13. Sensible heat conductances c^h_a , c^h_g , and c^h_v ((2.5.94), (2.5.95), (2.5.96))
- 14. Latent heat conductances c_a^w , c_v^w , and c_g^w ((2.5.108), (2.5.109), (2.5.110))
- 15. Sensible heat flux from vegetation H_v ((2.5.97))
- 16. Latent heat flux from vegetation λE_v ((2.5.101))

- 17. If the latent heat flux has changed sign from the latent heat flux computed at the previous iteration ($\lambda E_n^{n+1} \times \lambda E_n^n < 0$), the latent heat flux is constrained to
- be 10% of the computed value. The difference between the constrained and computed value (

 $\Delta_1=0.1\lambda E_v^{n+1}-\lambda E_v^{n+1}$) is added to the sensible heat flux later.

18. Change in vegetation temperature ΔT_v ((2.5.129)) and update the vegetation temperature as $T_v^{n+1} = T_v^n + \Delta T_v$. T_v is constrained to change by no more than 1°K in one iteration. If this limit is exceeded, the energy error is

(2.5.138)

$$\Delta_{2} = \overrightarrow{S}_{v} - \overrightarrow{L}_{v} - \frac{\partial \overrightarrow{L}_{v}}{\partial T} \Delta T_{v} - H_{v} - \frac{\partial H_{v}}{\partial T} \Delta T_{v} - \lambda E_{v} - \frac{\partial \lambda E_{v}}{\partial T} \Delta T_{v}$$
1. Water vapor flux E_{v} ((2.5.133))

2. Transpiration E_v^t ((2.5.134) if $\beta_t > 0$, otherwise $E_v^t = 0$)

3. The water vapor flux E_v is constrained to be less than or equal to the sum of transpiration E_v^t and the water available from wetted leaves and stems $W_{can}/\Delta t$. The energy error due to this constraint is

$$\Delta_3 = \max\left(0, E_v - E_v^t - \frac{W_{can}}{\Delta t}\right).$$
 (2.5.139)

The error $\lambda \Delta_3$ is added to the sensible heat flux later.

- 1. Sensible heat flux H_v ((2.5.135)). The three energy error terms, Δ_1 , Δ_2 , and $\lambda \Delta_3$ are also added to the sensible heat flux.
- 2. The saturated vapor pressure e_i (Chapter 2.9), saturated specific humidity $q_{sat}^{T_v}$ and its derivative $\frac{dq_{sat}^{T_v}}{dT_v}$ at the leaf surface (section 2.5.5), are re-evaluated based on the new T_v .
- 3. Canopy air temperature T_s ((2.5.93))

37 step solution

- 4. Canopy air specific humidity q_s ((2.5.107)) 5. Temperature difference $\theta_{atm} - \theta_s$ 6. Specific humidity difference $q_{atm} - q_s$ 7. Potential temperature scale $\theta_* = \frac{\theta_*}{\theta_{atm} - \theta_s} (\theta_{atm} - \theta_s)$ where $\frac{\theta_*}{\theta_{otm}-\theta_*}$ was calculated earlier in the iteration 8. Humidity scale $q_* = \frac{q_*}{q_{atm} - q_s} (q_{atm} - q_s)$ where $\frac{q_*}{q_{atm} - q_s}$ was calculated earlier in the iteration 9. Virtual potential temperature scale θ_{v*} ((2.5.17)) 10. Wind speed including the convective velocity, V_a ((2.5.24) 11. Monin-Obukhov length L((2.5.49))12. The iteration is stopped after two or more steps if $\tilde{\Delta}T_v < 0.01$ and $|\lambda E_v^{n+1} - \lambda E_v^n| < 0.1$ where $\tilde{\Delta}T_v = \max\left(\left|T_v^{n+1} - T_v^n\right|, \left|T_v^n - T_v^{n-1}\right|\right)$, or after forty iterations have been carried out. 13. Momentum fluxes τ_x , τ_y ((2.5.5), (2.5.6)) 14. Sensible heat flux from ground H_a ((2.5.89))
- 15. Water vapor flux from ground E_g ((2.5.102))

16. 2-m height air temperature T_{2m} , specific humidity q_{2m} , relative humidity RH_{2m} ((2.5.58), (2.5.59), (2.5.60))

The end!

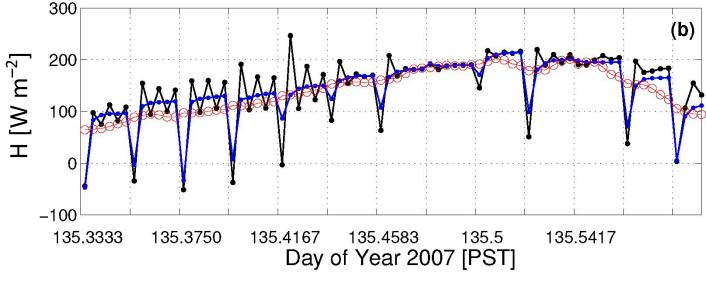
https://escomp.github.io/ctsm-doc s/versions/release-clm5.0/ html/tech_note/index.html

CLM5/6 canopy physics: a deep dive

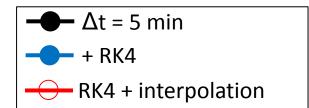
However, if ζ changes sign more than four times during the temperature iteration, $\zeta = -0.01$. This helps prevent "flip-flopping" between stable and unstable conditions.

If the latent heat flux has changed sign from the latent heat flux computed at the previous iteration ($\lambda E_v^{n+1} \times \lambda E_v^n < 0$), the latent heat flux is constrained to be 10% of the computed value. The difference is added to the sensible heat flux later.

 T_v is constrained to change by no more than 1°K in one iteration. If this limit is exceeded, the energy error is added to the sensible heat flux later.

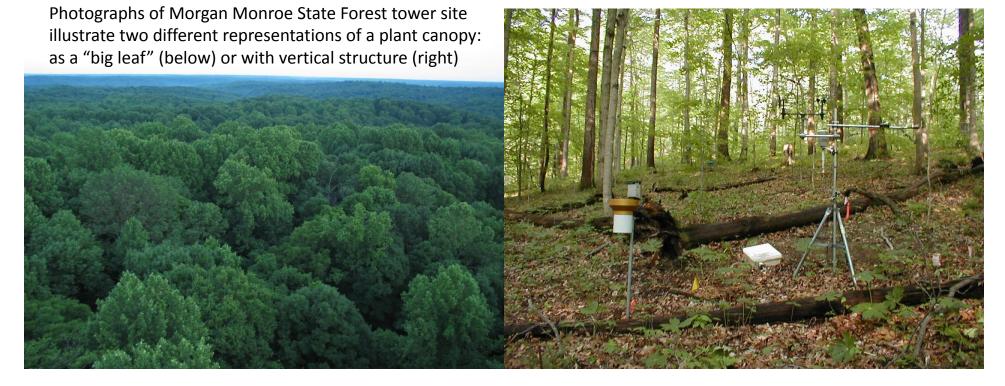

> https://escomp.github.io/ctsm-docs/versions/releaseclm5.0/html/tech_note/index.html

Numerical methods


CLM-ml v2:

- 5-min timestep instead of 30-min
- 4th-order Runge-Kutta (RK4)
- Interpolate 30-min forcing to 5-min

6-hour period from morning to mid-afternoon

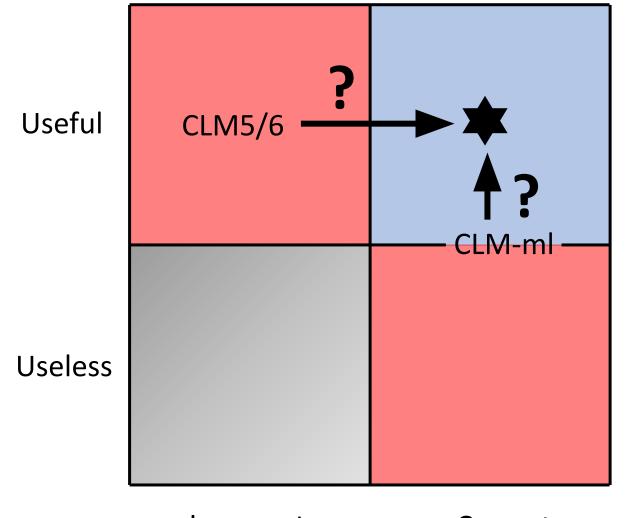


Advanced numerical methods can eliminate need for ad-hoc "fixes"

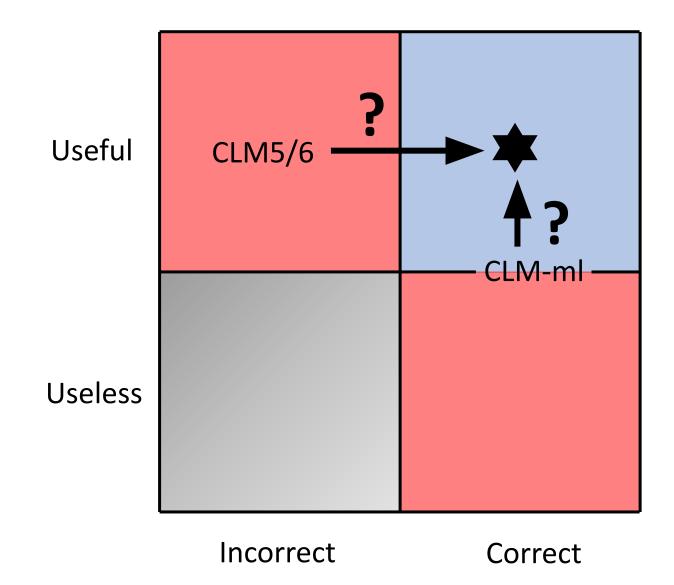
Bonan, Burns & Patton (unpublished)

Two ways to model plant canopies

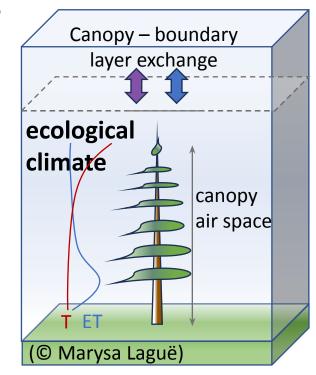
Big-leaf canopy "incorrect but useful"


Raupach & Finnigan (1988) Aust. J. Plant Physiol., 15, 705-716

Multilayer canopy


"correct but useless"

Attaining the correct and useful model


Incorrect Correct

Attaining the correct and useful model

New science

- Directly observable ($A_n, g_s, \psi_{l}, T_{l}, \delta^{13}C$)
- Canopy chemistry (e.g., BVOCs, dry deposition)
- Forest microclimates (overstory, understory)
- Orphan air space

Technical debt

	CLM6 Code: clm_drv	
EDCanopyStructureMod update_hlm_dynamics z0m_pa = z0mr(pft)*height displa_pa = displar(pft)*height	BiogeophysPreFluxCalc SetZOmDisp 	- BiogeophysPreFluxCalcsMod
	<pre>Meier2022: z0m =; displa = SetRoughnessLengthsAndForcHeightsNonL z0mv = z0m; z0hv = z0mv; z0qv = z0mv</pre>	ake FrictionVelocityMod
Used also with — FATES	CanopyFluxes ZengWeng: z0mv =; displa = Meier2022: z0mv =; displa = z0hv = z0mv; z0qv = z0mv	- CanopyFlux esMod
	SetActualRoughnessLengths z0m_actual =	Friction VelocityMod

5 subroutines over 4 modules

6 variables over two data types

canopystate_type%z0m_patch canopystate_type%displa_patch frictionvel_type%z0mv_patch frictionvel_type%z0hv_patch frictionvel_type%z0qv_patch frictionvel_type%z0m_actual_patch