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Runoff projections in Earth System Models (ESMs)

• Why do we use ESMs?
• ESMs simulate the interactions between climate system, which is essential for projecting climate change

• For the future water resource assessment, runoff projections from ESMs are being utilized
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The global urban population facing water scarcity (CMIP6 runoff): 
0.93 billion (2016)  1.70–2.37 billion people (2050)



Source of uncertainty in regional runoff projections (ΔQ) 

Precipitation response
(ΔP) ΔQ are generally more 

uncertain than either  ΔP & ΔT
Main driver of runoff

Highly uncertain

Meteorological forcings

Temperature responses
(ΔT)

Incomplete proxy for ET
Relatively robust
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Source of uncertainty in regional runoff projections (ΔQ) 

Precipitation response
(ΔP) 

Sensitivity of runoff to 
ΔP & ΔT (runoff sensitivity)

Main driver of runoff
Highly uncertain

The runoff generation process 
related to warming are complex

Meteorological forcings Additional uncertainties

Temperature responses
(ΔT)

Incomplete proxy for ET
Relatively robust

Changes in P Characteristics

Phase shift from snow to rain (Q )
Berghuijs et al., 2014

Increase in extreme p (Q↑)
Wainwright & Parsons, 2002

Changes in seasonality (Q )
Scheff et al., 2022

Vegetation feedback

Stomatal closure (Q↑)
Betts et al 2007

Vegetation greening (Q↓)
Mankin et al. 2019

snow/glacier melt

Direct increase (Q↑)
Cui et al., 2023

Snow-albedo feedback (Q↓)
Milly and Dunne, 2020
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Research objectives

1. Quantify the model bias in runoff sensitivity

2. Using the runoff sensitivity bias, constrain future runoff projections 
 Does the biases matter for the future projection?

Research Objectives
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Precipitation response
(ΔP) 

Sensitivity of runoff to 
ΔP & ΔT (runoff sensitivity)

Meteorological forcings Additional uncertainties

Temperature responses
(ΔT)



Estimation of runoff sensitivity using multiple linear regression

δQ ≈ 𝛼𝛼δP + 𝛽𝛽δT + cδPδT
𝛿𝛿: 5-yr averaged temporal variations

Runoff sensitivity 

𝛼𝛼 =
𝜕𝜕(δQ)
𝜕𝜕(δP) 𝛽𝛽 =

𝜕𝜕(δQ)
𝜕𝜕(δT)

P sensitivity T sensitivity

Regression slope is trained for historical period (1948-2017) 

P sensitivity: Q changes [%] per unit P increase [%]
T sensitivity: Q changes [%] per unit T increase [K]
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T sensitivity is uncertain among climate models

MMM runoff sensitivity (28 CMIP6 models, 1948-2017)
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hatching: sign agreement < 70%

δQ ≈ 𝛼𝛼δP + 𝛽𝛽δT + cδPδT
𝛿𝛿: 5-yr averaged temporal variations

Runoff sensitivity 

𝛼𝛼 =
𝜕𝜕(δQ)
𝜕𝜕(δP)

𝛽𝛽 =
𝜕𝜕(δQ)
𝜕𝜕(δT)

P sensitivity T sensitivity

hatching: sign agreement < 70%

αHIST: P sensitivity 𝛽𝛽HIST: T sensitivity



Does this runoff sensitivity capture the effects of climate change on runoff generation?
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 Statistically indistinguishable multi-model median + Significant inter-model correlation
 The historical runoff sensitivity can skillfully predict the future changes in 97 among 131 basins.

CMIP6 MMM ΔQsim

δQ = 𝛼𝛼HISTδP + 𝛽𝛽HISTδT

Runoff sensitivity from 
historical simulation

ΔQpred = 𝛼𝛼HISTΔP + 𝛽𝛽HISTΔT

Prediction of each model’s
runoff projection

Δ: SSP245 future changes (2030-2070)

CMIP6 MMM ΔQpred



• GRUN as OBS proxy: ML-based global runoff reanalysis dataset

Q = Random Forest Model (Ppast 6 months, Tpast 6 months)

 100 ensembles members exist, enabling the quantification of observational uncertainty

 GRUN data is shown to be outperforming the reanalysis data; However, the data is still not reliable for some basins.

GSIM-derived training data (5094 grid cell)

1903-2017 monthly / 0.5° × 0.5°

How biased is the model sensitivity?
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Annual timeseries of runoff



How biased is the model sensitivity?
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αHIST: MMM P sensitivity 𝛽𝛽HIST: MMM T sensitivity

αGRUN: P sensitivity 𝛽𝛽GRUN: T sensitivity



In models, P sensitivity is more positive, and T sensitivity is less negative
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αGRUN: P sensitivity 𝛽𝛽GRUN: T sensitivity

MMM P sensitivity biases (αHIST – αGRUN) MMM T sensitivity biases (𝛽𝛽HIST – 𝛽𝛽GRUN)



ΔQobs − ΔQsim: SSP245 MMM OC (28 models)

ΔQpred = 𝛼𝛼HISTΔP + 𝛽𝛽HISTΔT
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Prediction using runoff sensitivity Observationally-constrained projection

Δ: SSP245 future changes (2030-2070)

How much these biases affect the future projections?  Observational constraint

ΔQobs = 𝛼𝛼GRUNΔP + 𝛽𝛽GRUNΔT

 Overall, the observationally-constrained projections indicate a drier future than the unconstrained projections
 The correction effect mainly arises from the T sensitivity bias



ΔQpred = 𝛼𝛼HISTΔP + 𝛽𝛽HISTΔT
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Prediction using runoff sensitivity Observationally-constrained projection

Δ: SSP245 future changes (2030-2070)

How much these biases affect the future projections?  Observational constraint

ΔQobs = 𝛼𝛼GRUNΔP + 𝛽𝛽GRUNΔT

CMIP6: SSP245 MMM OC (28 models) CMIP5: RCP45 MMM OC (22 models)

 Inter-basin correlation = 0.91  the constraining effect is consistent regardless of model generation
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The observational constraint for central value is robust for 41 of 131 global river basins

ΔQobs − ΔQpred: SSP245 MMM OC (28 models)

ΔQpred == ΔQsim
Skillful prediction

ΔQobs ≠ ΔQsim
Discernible correction

ΔQobs − ΔQsim > NS + IV
Smaller non-stationarity and 

internal variability

(41/51 basins)(107/131 basins) (68/107 basins) (51/68 basins)

Significant corrections
both in CMIP5 and CMIP6
 ‘robust constraint’

Is the correction effect statistically significant?



What is the cause of the sensitivity bias?

For each basin, we get inter-model correlation between mean state variables and runoff sensitivity

 Fixing the bias in runoff ratio (Q/P) may improve P sensitivity bias.

 It is unlikely to resolve the more critical T sensitivity bias if we only focus on mean state bias.
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“The runoff decline due to temperature increase is generally underestimated in ESMs”

This bias can be quantified by the T sensitivity using historical timeseries

Discussions

1. The degree of sensitivity bias is affected by observational dataset, but overall results are consistent

Zhang et al. 2023, Douville 2024

2. To help reducing the T sensitivity bias, we have implemented runoff sensitivity metrics to diagnostic 
package (NOAA MDTF & ILAMB)

Key point

When validated with more reliable station data for selective basins, T sensitivity biases are more negative.
The underestimated drying in ESMs are also consistent to other studies using different datasets or statistical methods

As traditional modeling approach focusing on mean state biases would not resolve T sensitivity bias, 
we added the model diagnostics of runoff sensitivity to the NOAA MDTF metrics package and ILAMB package
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Example: NOAA MDTF diagnostic package (CESM2)
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NOAA MDTF diagnostic package output for CESM2
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NOAA MDTF diagnostic package output for CESM2
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Thank you!

Q&A

“The runoff decline due to temperature increase is generally underestimated in ESMs”

This bias can be quantified by the T sensitivity using historical timeseries

Key point

Contact: hk764@cornell.edu

mailto:hk764@cornell.edu
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