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INTRODUCTION | Current model responses of CO, are highly uncertain
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e The tropical CO, effect dominates
uncertainties in global net CO,, uptake.

e FACE experiments have been
conducted primarily not in the Tropics.
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Long-term CO, fertilization data in the Tropics is required!



INTRODUCTION | Introduce ELEVATE project

The tropical CO, effec! is among the lafgest terrestrial ecbsystem uncertainties over the next centUry. Recent discoveries
n Costa Rica degassing CO. into the surrounding rainforests, providing a natural experiment to test the
ecosystem esponses  and e significant scientific advaﬁ; at the interdisciplinary intersection of ecology and volcanology.
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ELEVATE was a program established by NASA JPL to investigate
synergies between Costa Rica’s tropical rainforests and its
volcanoes.
Mapping efforts found that throughout Costa Rica’s protected
forests were fumarolic vents leading back to volcanic centers far
from the volcanic craters themselves.
Of particular note was that many of these vents were
continuously emitting elevated CO, in very high concentrations,
with no other gas emissions.
Plots were established to compare ecosystem characteristics in
elevated CO, areas relative to ambient CO, areas to determine if
these vents could act as natural FACE experiments, but with
three added benefits:

o i) elevated CO, exposure was long-term (i.e.,

multi-decadal);
o i) there were much larger areas of exposure relative to
FACE sites; and,

o iii) they were in tropical forests.
Moreover, geologically-sourced CO, has a unique isotopic
signature that is retained in tree wood, enabling tracking of CO,
exposure at the individual tree level in both space and time.



INTRODUCTION | Observation data in ELEVATE project
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INTRODUCTION | ELEVATE and CLM

e ELEVATE can address one of the largest uncertainties in carbon-climate
feedbacks: the response of tropical forests to elevated CO,,.

e Earth System Models fundamentally drive the science of ELEVATE.

e For this presentation, | focus on ECOSTRESS data at the Rincon de la
Vieja ELEVATE sites for CLM 5.0.



|NTRODUCT|ON | Explore the mechanism of ET regulating water and carbon dynamic under CO2 fertilization.
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CO; g ° CO2 fertilization affects water and carbon
cycle.
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METHODS | Workflow and model improvement
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In order to constrain model uncertainty,
| added a scalar adjustment (a) to the stomatal conductance (g,) equation and modify
the sensitivity of g_to CO.,;:
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RESULTS | Model validation (obs. source: ECOSTRESS)
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ELEVATE data-constrained CLM5 has a higher R? than original CLM5.



RESULTS | Relationship among CO,, VPD, gs,

Hourly daytime (5 am - 20 pm) data:
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RESULTS | Future scenarios under based CO, concentration (367 ppm)

Surface temperature

(°C)

27

26 A

25 1

24

23 A

—$— Ambient CO, —$— Elevated CO,

(a) " (b)
O 006
5 s ]
= O -
S, 0.05 o _
9 &7 401
S £ 0.04 cE
TS s 2
‘g‘ £ 003 S 30-
S i
»h 002
........................ 20 -
J FMAM] JASOND J FMAM] JASOND
Month Month

c) d
1.4 1
V1.2
>
o~
a |
O E 1.0
@)
o)
0.8 A
) FMAM] JASOND ] FMAMJ] JASOND

Month Month

e CO, fertilization significantly increases gs and GPP, slightly increases surface temperature.

° CO2 fertilization decreases ET.

e CO, fertilization has a bigger impact in the first half of the year than in the second half.
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RESULTS | Future scenarios under based CO, concentration (367 ppm)
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Model inputs are derived from five representative Earth
system models: GFDL-ESM4, IPSL-CM6A-LR,
MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL.

Stomatal conductance (gs) decreases in ssp370 and
ssp585 compared with ssp126.

ET:. ssp585 > ssp370 > ssp126
GPP: no significant differences
WUE: ssp126 > ssp370 > ssp585

Soil moisture: ssp126 > ssp370 > ssp585
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NEXT STEPS |

Integrate more ELEVATE data:

o Soil carbon and nitrogen, leaf and canopy nutrients and traits.
o Soil and stem respiration.

o Leaf-level gas exchange (GPP, ET, WUE, gs).

o Remote sensing:

NASA spaceborne: GEDI, EMIT

Airborne data: AVUELO (AVIRIS-5)

Airborne data: LIDAR

Ultra-high resolution commercial imagery: Maxar, ICEYE

Integrate CLM5-FATES and CESM
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