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Global Land-Atmosphere Coupling: A Challenge for Model Validation 
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Fig1. Global distribution of L-A coupling metric 
(SM and P) averaged across AGCMs during boreal 
summer (Koster et al. 2004). 

Models disagree on the strength of the coupling 
metric in hotspot regions (Koster et al. 2004).

Results can be validated locally at Flux tower sites.

Which model is correct?

Short duration

Limited global distribution

The need for global observationally-based datasets 
for assessing the results of weather and climate 

models.
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We have an incomplete picture of the reality of global L-A coupling for model validation.

We produced a global corrected L-A coupling metric using observational gridded data, while 
accounting for the observational random errors in soil moisture satellite measurements. 

(Tavakoli & Dirmeyer, 2025, in preparation) 

We can quantify the magnitude of stochastic random errors in the SM time series.

(Delworth and Manabe. 1988) (Robock et al., 1995) (Vinnikov et al.1996) 

What do I mean by corrected observational metrics?
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Conduct a comprehensive comparison between Corrected Observational LA coupling metrics and 
Model-Based Estimates. 

Now that we have globally corrected observational gridded LA coupling metrics, 
what’s next?

Why this is important?

Provide guidance for model development

Identify global regimes and hotspots for LA interactions in models
Highlight regions where model biases are most pronounced

Interpret spatial patterns and seasonal variations in coupling metrics



Methodology: Metrics

Soil Moisture Memory 
(SMM)

Correlation

Fig2. (a) Conceptual SM 
– EF model (Seneviratne 
et al.2010), (b) Six 
potential segmented 
regression models.

Coupling Index
(Dirmeyer et al.,2011)

Regime Distribution

Break points
(wp, csm)

(a)
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(b)

Metrics

Bivariate Metrics
(SM, HFs: LE, H, EF)

Soil moisture 
Metrics



Methodology: Data Description
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Variable Name Source Spatial Resolution Surface Soil Layer

Soil Moisture

Soil Moisture Active Passive 
Satellite

(SMAP L3)
9 Km*9 Km 0 - 5 cm

Climate Change Initiative
(ESA CCI v08.1)

0.25o*0.25o 0 - 5 cm

SoMo.ml 0.25o*0.25o
0 –10 cm

10 – 30 cm
30 – 50 cm

Surface Heat Fluxes
Global Land Evaporation 

Amsterdam Model  
(GLEAM) v4.1a

0.1o*0.1o ------

Soil Moisture
Surface Heat Fluxes

CESM2
    - AMIP

  - CLM
0.94o lat*1.25o lon

0 – 10 cm
10 – 30 cm
30 – 50 cm

Observation

Model
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Results: Global JJA SMM Differences (Models vs CCI) 

Fig3. SMM differences in model vs CCI during JJA.

JJA CCI vs CLM

CCI vs AMIP
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Results: Global JJA SMM Differences (Models vs Observations) 

Fig4. SMM differences in model vs observational products during JJA.

CCI vs CLM JJACCI vs AMIP

SoMo vs CLM SoMo vs AMIP

SMAP vs CLM SMAP vs AMIP
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Results: Global JJA Correlation Comparison (Models vs Observations)

Fig5. R(SM,E) 

JJACCI vs AMIPCCI vs CLM

SoMo vs CLM

SMAP vs CLM

SoMo vs AMIP

SMAP vs AMIP
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Preliminary Results : Global SM-EF Regime Distribution

Fig6. Global distribution of SM-EF regimes. 
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11Fig7. Relative RMSE Differences Across Layer 1 and 3 (AMIP vs SoMo)

Results: Evaporation or Transpiration? 

𝚫𝚫𝑹𝑹 < 𝟎𝟎 ∶ 
Deeply rooted vegetation 
>> Transpiration

𝚫𝚫𝑹𝑹 > 𝟎𝟎: 
 Bare soil 
>> Evaporation

𝚫𝚫𝑹𝑹 SoMo

𝚫𝚫𝑹𝑹 AMIP



Conclusion:
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This work represents an important step toward validating the global model-derived LA coupling 
metrics against corrected observational estimates. 

To be continued...Contact Information: ntavakol@gmu.edu

1. The largest disparities in SMM typically occur in monsoon and semi-arid zones, where seasonal rainfall is 
strongly influenced by large-scale circulation patterns that are challenging for models to capture 
accurately.  

2. Soil moisture in both CLM and AMIP exerts more control on surface fluxes than in observations.  

3. These biases in model soil moisture may be due to precipitation biases within the models.  

4. The minimum model conductance is the highest among all vegetation types, indicating the least response 
to soil moisture variations, suggesting that factors other than soil moisture are influencing the system.  

5. Although AMIP and CLM appear very similar and their deviations are subtle, the CLM model seems to 
govern most of these metrics.  

6. Models tend to be wetter compared to observations in regime distributions due to their strong capillary 
action in models.  

7. Although AMIP simulations can better capture the influence of subsurface soil moisture on transpiration in 
agricultural, grassland, and savanna areas, this controlling effect is not evident in deep tropical forests, 
China, or the eastern United States. 
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