Trait-Based Vegetation Optical Properties Impact Future Climate Projections

Dr. Renato K. Braghiere^{1,2}

Yujie Wang¹, Holly Croft³, Woodward Fischer¹, Anthony Bloom², Yitong Yao¹, Zhaoyi Shen¹, David Schimel², Tapio Schneider¹ and Christian Frankenberg^{1,2}

¹Caltech, ²NASA JPL, ³University of Sheffield

Monday, 24 February 2025

Jet Propulsion Laboratory California Institute of Technology

© 2025 All rights reserved.

Earth System Modeling

By modeling **physical processes**, ESMs help **understand** and **predict** how the Earth system **interacts** and **responds** to **natural changes** and **human activities**

"[...] transfer of radiation, water and heat in the vegetation-soil-atmosphere continuum are treated very simply in the global ecosystem models [...]"

IPCC 2013

Biodiversity in Earth System Models

Plant functional types (**PFTs**) represent **broad groupings** of **plant species** that share **similar** characteristics in **ecosystem function**.

Why **PFTs**?

- Lack of observations;
- Simpler Look-up tables;
- Time invariant properties;

But are **PFTs** a **sufficient** representation of **biodiversity** in **ESMs**?

Radiative transfer scheme: Two-stream

Why the **two-stream scheme**?

- **Fewer** parameters;
- Computationally **efficient**;
- Lack of observations;

Does it matter?

1. What is the bias in canopy spectral properties between PFT vs. Trait?

- Global canopy albedo maps;
- Calculate bias.

2. What is the impact of the canopy albedo bias on climate and carbon simulations?

- Run a **climate model**;
- Compare **performance**.

PFT vs. Trait: methodology

We developed a **global map of** canopy spectral properties:

- Using a leaf chlorophyll content map derived from ENVISAT MERIS (Croft et al. 2020);
- Using the CliMA land model (Wang et al., 2021, 2023; Braghiere et al. 2021) to calculate optical properties (ρ and τ) from leaf traits;
- Replacing the **optical properties** from a **PFT look-up table** with the **trait-based** one in the Community Earth System model (**CESM**) 2 (Danabasoglu et al., 2020).

Wang et al. 2021

Table 3.1: Plant functional type optical properties									
Plant Functional Type	χ_L	α_{vis}^{leaf}	α_{nir}^{leaf}	α_{vis}^{stem}	α_{nir}^{stem}	$ au_{vis}^{leaf}$	$ au_{nir}^{leaf}$	τ_{vis}^{stem}	$ au_{nir}^{stem}$
NET Temperate	0.01	0.07	0.35	0.16	0.39	0.05	0.10	0.001	0.001
NET Boreal	0.01	0.07	0.35	0.16	0.39	0.05	0.10	0.001	0.001
NDT Boreal	0.01	0.07	0.35	0.16	0.39	0.05	0.10	0.001	0.001
BET Tropical	0.10	0.10	0.45	0.16	0.39	0.05	0.25	0.001	0.001
BET temperate	0.10	0.10	0.45	0.16	0.39	0.05	0.25	0.001	0.001
BDT tropical	0.01	0.10	0.45	0.16	0.39	0.05	0.25	0.001	0.001
BDT temperate	0.25	0.10	0.45	0.16	0.39	0.05	0.25	0.001	0.001
BDT boreal	0.25	0.10	0.45	0.16	0.39	0.05	0.25	0.001	0.001
BES temperate	0.01	0.07	0.35	0.16	0.39	0.05	0.10	0.001	0.001
BDS temperate	0.25	0.10	0.45	0.16	0.39	0.05	0.25	0.001	0.001
BDS boreal	0.25	0.10	0.45	0.16	0.39	0.05	0.25	0.001	0.001
C ₃ arctic grass	-0.30	0.11	0.35	0.31	0.53	0.05	0.34	0.120	0.250
C ₃ grass	-0.30	0.11	0.35	0.31	0.53	0.05	0.34	0.120	0.250
C ₄ grass	-0.30	0.11	0.35	0.31	0.53	0.05	0.34	0.120	0.250

PFT vs. Trait: climate bias

Hyperspectral trait modeling not only enables us to better exploit satellite data but also impacts the surface energy balance

Wang & Braghiere et al, Nature Comm. *under review*

PFT vs. Trait: climate bias

Hyperspectral trait modeling not only enables us to better exploit satellite data but also impacts the surface energy balance

Wang & Braghiere et al, Nature Comm. under review

PFT vs. Trait: validation

Changes are observed throughout the climate system including energy, water and carbon variables;

Improvements are observed in the evaluated variables in the land surface when compared with satellite observations.

PFT vs. Trait: carbon bias

Fisher and Koven, 2020

Another example where trait variability representation can impact the climate...

Fisher and Koven, 2020

Fisher and Koven, 2020

Fisher and Koven, 2020

Indirect & Direct impact of Nutrients on Climate

Indirect & Direct impact of Nutrients on Climate

Indirect & Direct impact of Nutrients on Climate

Conclusions

Canopy albedo biases between the PFT and trait cases:

 Can impact climate and carbon cycle simulations;

 Trait-based configurations improved agreement with MODIS albedo data in the **tropics**;

New generation ESMs should include trait-based parametric variability to reduce uncertainty in climate projections

ESMs

MODIS

EMIT/SBG...

Thank you

<u>renato.k.braghiere@jpl.nasa.gov</u> @RenatoBraghiere r

renatobraghiere.co

NASA

Jet Propulsion Laboratory California Institute of Technology RESNICKINSTITUTE science + energy + sustainability

Caltech