Model Validation and Sensitivity Analysis on Tropical Dry Forest Response to Nutrient Fertilization

Shuyue Li¹, Bonnie Waring², Jennifer Powers^{3,4}, and David Medvigy¹

¹Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA ²Grantham Institute on Climate Change and the Environment, Imperial College London, South Kensington, London, SW7 2AZ, UK ³Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA ⁴Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108, USA

Results

Representation of forest carbon cycle in Earth System Models

Inaccurate/insufficient representation of forest carbon cycle in ESMs

Number of terrestrial biosphere models contributing to the Global Carbon Project (the TRENDY ensemble) with and without coupled C–N-P cycling.

(Kou-Giesbrecht et al. 2023; Menge et al. 2023)

Chapin et al. Principles of Terrestrial Ecosystem Ecology

Ecology, 89(2), 2008, pp. 371–379 © 2008 by the Ecological Society of America

NITROGEN LIMITATION OF NET PRIMARY PRODUCTIVITY IN TERRESTRIAL ECOSYSTEMS IS GLOBALLY DISTRIBUTED

DAVID S. LEBAUER^{1,3} AND KATHLEEN K. TRESEDER²

nature geoscience

LETTERS PUBLISHED ONLINE: 20 APRIL 2015 | DOI: 10.1038/NGE02413

Future productivity and carbon storage limited by terrestrial nutrient availability

William R. Wieder^{1,2*}, Cory C. Cleveland³, W. Kolby Smith^{3,4} and Katherine Todd-Brown^{5,6}

Inaccurate/insufficient representation of forest carbon cycle in ESMs limited the understanding and predictability of the fate of the forests

Question:

How will plants adjust NPP allocation, particularly to below- vs. above-ground parts, in response to nutrient fertilization in tropical dry forests? How plants adjust allocation in response to soil nutrient change?

Multiple limitation theory:

Plants should adjust to their environment so that all essential resources are equally limiting. (Farrior et al. 2013)

We might have expected that:

- when acquisition of a particular nutrient is the most limiting factor for plants, any increases in that nutrient would have resulted in decreased allocation to fine roots.

We focused on soil soluble P for our tropical study site.

How plants adjust allocation in response to soil nutrient change?

Observations:

- Both above ground and belowground production increases with P addition (Yuan and Chen 2012; Hou et al. 2020)
- Above ground production increased more than belowground production with P addition (Li et al. 2016)
- Increases in fine root production relative to above ground production with P addition (Cunha et al. 2022)

How plants adjust allocation in response to soil nutrient change?

- ► Model representation:
 - fixed allocation to fine roots
 - a negative correlation (more soil nutrient, less allocation to roots)
 - a positive correlation (more soil nutrient, more allocation to roots)

Introduction

Site 1 (Sandy clay loam)

Static levels

S

namic

Grid

Polygon: meteorological conditions

Site: abiotic characteristics (e.g. soil texture)

Patches: age since last disturbance

Cohorts: size and plant f<u>unctional type</u>

Research Question

Theory

ED2 dynamic vegetation model

- Principal Inputs:
 - Initial forest state
 - Edaphic conditions
 - Atmospheric forcing
- Principal Outputs:
 - Productivity
 - Carbon allocation
 - Plants recruitment
 - Mortality

.

Longo et al. 2019

Methods

- Field observations (benchmark):
 - Horizontes Meteorological Station in Costa Rica;
 - 2015-2017;
 - 16 experimental sites -4 controlled, 4 N addition, 4 P addition, 4 N+P • addition.

Results

Initial model parameterization:

• $\frac{root}{leaf} = 0.3$

Model simulations:

Simulation set	Number of simulations	Allocation parameterizations	Analysis period	Rationale
Baseline	16, corresponding to 16 plots	a = 0.3, b = 0	2015–2017	Validate the baseline model

Theory

Methods

Baseline

Stem mortality	2015	2016	2017	+NP/others
Observation	10.6 %	6.0 %	4.6 %	1.3–1.8
Baseline model	10.7 %	6.3 %	4.7 %	1.5

The model simulated reasonable biomass productivity and mortality in baseline settings, with some biases existing.

Methods

Methods

- Field observations (benchmark):
 - Horizontes Meteorological Station in Costa Rica;
 - 2015-2017;

Theory

• 16 experimental sites –4 controlled, 4 N addition, 4 P addition, 4 N+P addition.

Results

Conclusions

• Model modifications:

• $\frac{root}{leaf} = a + b * soil soluble P$

• Model simulations:

Simulation set	Number of simulations	Allocation parameterizations	Analysis period	Rationale
Baseline	16, corresponding to 16 plots	a = 0.3, b = 0	2015–2017	Validate the baseline model
Alternative parameterizations, short-term	16 plots × 63 parameterizations	all combinations of a and b , with $a = 0$, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and b = -60, -40, -20, 0, 20, 40, 60.	2015–2017	(1) Determine short-term sensitivity of model to parameterization; (2) validate alternative parameterizations

Alternative parameterizations: 3-year model validation

	<i>a=0</i>	a=0.1	a=0.2	a=0.3	a=0.4	a=0.5	a=0.6	<i>a=0.7</i>	a=0.8
<i>b</i> = -60	W+R	W+R	W+R	W+R	W+R	R	R	R	R
<i>b</i> = -40	W+R	W+R	W+R	W+R	W+R	R	R	R	R
<i>b</i> = -20	W+R	W+R	W+R	W+R	W+R	W+R	R	R	R
<i>b</i> = 0	W+R	W+R	W+R	W+R	W+R	W+R	W+R	R	R
<i>b</i> = 20	W+R	W+R	W+R	R			R	R	R
<i>b</i> = 40	R	R	R	\bigcirc		R	R	R	R
<i>b</i> = 60	L+R	L+R	R	R	R	R	R	R	R

Colored entries indicate statistically significant (p < 0.05) differences between model simulations and observations in the means of any of control, +N, +P, or +NP plots.

"L" refers to leaf production; "W" refers to wood production; "R" refers to root production.

 $\frac{root}{leaf} = a + b * soil soluble P$

Results

Only parameterizations assuming a positive relationship between allocation to fine roots and soil P were able to simulate the most realistic overall partitioning of biomass productivity.

Methods

Methods

- Field observations (benchmark):
 - Horizontes Meteorological Station in Costa Rica;
 - 2015-2017;

Theory

• 16 experimental sites –4 controlled, 4 N addition, 4 P addition, 4 N+P addition.

Results

Conclusions

• Model modifications:

• $\frac{root}{leaf} = a + b * soil soluble P$

• Model simulations:

Simulation set	Number of simulations	Allocation parameterizations	Analysis period	Rationale
Baseline	16, corresponding to 16 plots	a = 0.3, b = 0	2015–2017	Validate the baseline model
Alternative parameterizations, short-term	16 plots × 63 parameterizations	all combinations of a and b , with $a = 0$, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and b = -60, -40, -20, 0, 20, 40, 60.	2015–2017	(1) Determine short-term sensitivity of model to parameterization; (2) validate alternative parameterizations
Alternative parameterizations, long-term	16 plots \times 63 parameterizations	the same as short-term	30 years	Determine longer-term sensitivity of model to parameterization

Alternative parameterizations: 30-year sensitivity analysis

Strong sensitivity to parameterization:

- capture of above ground resources ultimately limited production
- potential over-allocation to fine roots

Results

What might explain the success (even short-term) of "pos" parameterizations?

- It could be that soil P supply, not fine root biomass, limited P uptake in the unfertilized plots.
 - In an extreme case, in the complete absence of soil P, P acquisition would be zero regardless of fine root biomass.
 - The optimal amount of fine root biomass (with respect to P acquisition) would be zero in order to avoid construction and maintenance costs.
 - As soil P increases above zero, the optimal amount of fine root biomass would also increase.
- ► The deciduousness of this forest may be significant.
 - At the beginning of the rainy seasons, trees experience a large P demand to build their P-rich leaves. It may be adaptive for plants to construct these leaves as quickly as possible, and having large fine root production may facilitate that.

Plants may over-allocate to fine roots in order to maximize their ability to compete with neighbors.

Take home message

- Only parameterizations assuming a positive relationship between relative allocation to fine roots and soil P were able to accurately simulate leaf, wood and fine root production, as well as mortality, at three-year time scale.
- However, this parameterization would over-allocate to fine roots in P-fertilized plots on multidecadal time scales.
- Simultaneous measurements of leaf, wood, and fine root production in nutrient fertilization experiments and longer-term experiments are essential for better simulations of forest carbon balances.