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Introduction Research Question Methods

Representation of forest carbon cycle m Earth System Models
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Inaccurate/msufficient representation of forest carbon cycle m ESMs
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Soil nutrient availability mfluences carbon budget globally
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Inaccurate/msufficient representation of forest carbon cycle m ESMs

limited the understanding and predictability of the fate ofthe forests
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How plants adjust allocation m response to soi nutrient change?

Multiple limitation theory:

Plants should adjust to their environment so that all essential
resources are equally limiting. (Farrior et al. 2013)

We might have expected that:

- when acquisition ofa particular nutrient is the most limiting factor
for plants, any mcreases in that nutrient would have resulted n
decreased allocation to fine roots.

We focused on soil soluble P for our tropical study site.
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How plants adjust allocation m response to soi nutrient change?

» Observations:

» Both aboveground and
belowground production

increases with P addition (Yuan
and Chen 2012; Hou et al. 2020)

» Aboveground production
increased more than

belowground production with P
addition (Lietal. 2016)

» Increases in fine root production

relative to aboveground
production with P addition

(Cunha et al. 2022)
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How plants adjust allocation m response to soi nutrient change?

» Modelrepresentation:
» fixed allocation to fine roots

» anegative correlation (more soil
nutrient, less allocation to roots)

» a positive correlation (more soil
nutrient, more allocation to
roots)




Introduction Research Question

PLLLTTTS #ussasgasssasussnas,

o » Principal Inputs:
% - Initial forest state
.F:’ - Edaphic conditions
g - Atmospheric forcing
» Principal Outputs:
- Productivity

Dynamic levels

Longo etal. 2019

Carbon allocation
Plants recruitment

Mortality

Conclusions

ED2 dynamic vegetation model



Introduction

Inputs

Conclusions

ED2 with updated nutrient module
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Baseline
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Alternative parameterizations: 3-year model validation

root

a=0 | a=0.1 | a=0.2 | a=03 | a=04 | a=0.5 | a=0.6 | a=0.7 | a=0.8 —— = a + b * soil soluble P
leaf
b =-60
b=-40 » Onlyparameterizations
b=-20 assuminga positive

relationship between
b=0 allocation to fine roots and
soil P were able to simulate

b=20

the most realistic overall
b=40 partitioning ofbiomass
b=60 | L+R  L+R productivity.

Colored entries indicate statistically significant (p <0.05) differences between model
simulations and observations in the means ofany ofcontrol, +N, +P, or +NP plots.

“L’refers to leafproduction; “W” refers to wood production; “R” refers to root production.



Introduction Research Question

Gulf of O 2

Mexico Miami ‘1
(¢)

Havana

\.
- Cuba

<
N

N
(;uatemélg

f

/ % .
/j\’\J ‘ ‘_\/{“'/ Caribbean Sea

Estacion Experimgntal Forestal Horizontes

]

o/

Costa Rica
e

S Panama

I'.‘\)

Medellin «
Colombia

&

Ecuador

Theory
Methods

* Field observations (benchmark):
* Horizontes Meteorological Station in Costa Rica;
« 2015-2017;

* 16 experimental sites —4 controlled, 4 N addition, 4 P addition, 4 N+P
addition.

e Model modifications:
root

= a + b * soil soluble P
leaf

* Model simulations:

Simulation set Number of simulations  Allocation Analysis period Rationale
parameterizations
Baseline 16, corresponding a=03,b=0 2015-2017 Validate the baseline model
to 16 plots
Alternative 16 plots x 63 all combinations of 2015-2017 (1) Determine short-term sensitivity of
parameterizations, parameterizations a and b, with a =0, model to parameterization; (2) validate
short-term 0.1,0.2,0.3,04, 0.5, alternative parameterizations
0.6, 0.7, 0.8, and
b = —-60, —40, —20,
0, 20, 40, 60.
Alternative 16 plots x 63 the same as short-term 30 years Determine longer-term sensitivity of
parameterizations, parameterizations model to parameterization

long-term




Introduction Research Question Methods

Alternative parameterizations: 30-year sensitivity analysis
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» Strong sensitivity to parameterization:
- capture ofaboveground resources ultimately limited production

- potential over-allocation to fine roots
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What might explain the success (even short-term) of “pos” parameterizations?

» It could be that soil P supply, not fine root biomass, limited P uptake in the
unfertilized plots.

In an extreme case, in the complete absence ofsoil P, P acquisition would be zero regardless of
fine root biomass.

The optimal amount of fine root biomass (with respect to P acquisition) would be zero in order to
avoid construction and maintenance costs.

As soil P increases above zero, the optimal amount offine root biomass would also increase.

» The deciduousness ofthis forest maybe significant.

At the beginning ofthe rainy seasons, trees experience a large P demand to build their P-rich
leaves. It maybe adaptive for plants to construct these leaves as quicklyas possible, and having
large fine root production may facilitate that.

» Plants mayover-allocate to fine roots in order to maximize their ability to
compete with neighbors.
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Take home message

» Onlyparameterizations assuming a positive relationship between relative allocation to fine
roots and soil P were able to accurately simulate leaf, wood and fine root production, as
well as mortality, at three-year time scale.

» However, this parameterization would over-allocate to fine roots in P-fertilized plots on
multidecadal time scales.

» Simultaneous measurements ofleaf, wood, and fine root production in nutrient fertilization
experiments and longer-term experiments are essential for better simulations of forest
carbon balances.
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