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Air-sea fluxes and their representation
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Momentum flux (τ𝗑, τ𝗒) ≡ (−𝗐′ 𝗎′ , − 𝗐′ 𝗏′ )Sensible heat flux  
Latent heat flux 

𝖰𝖲 ≡ − 𝗐′ 𝖳′ 

𝖰𝖫 ≡ − 𝗐′ 𝗊′ 

We need air-sea flux model in: 

• Coupled GCM: prognostic variables -> fluxes as boundary conditions 

• Flux products (forced GCM): observables (in-situ or satellite) -> fluxes (hard to observe)

State variables: 

Wind speed  

Air temp.  and humidity  

SST  

Current speed  

…

Ua

Ta qa

To

Uo



State-of-the-art air-sea flux parameterization: bulk algorithm

• Bulk algorithms 
• Along-wind stress   

• Cross-wind stress  

• Sensible heat flux  

• Latent heat flux   

• Use of “bulk” variables to model the 
surface layer 

• Physics-based (Monin-Obukhov similarity 
theory) + empirically fitted parameters

τx = ρaCDS(Ua − Uo)

τy = 0

QS = ρacpCHS(Ta − To)

QL = ρaLeCES(qa − qs)
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S = |Ua − Uo |

State variables (Inputs)

Fluxes (Outputs)

Brodeau et al. 2017Ad-hoc corrections 

Iterative algorithm

Different versions



Current issues with air-sea flux modeling
• Accurate representation of air-sea fluxes across scales is challenge (for 

both observation and modeling). 

• Using different algorithms has a considerable impact on flux estimation 

• Sensitivity studies: general circulation (Polichtchouk and Shepherd 
2016), precipitation (Harrop et al. 2018), MJO (Hsu et al. 2022), SST 
(Bonino et al. 2022)… 

• Bulk algorithms are designed to represent the mean of flux given the 
input state variables 

• Additional inputs: e.g. sea-state (Sauvage et al. 2023, etc.) 

• Stochastic parameterization (Williams 2012, Berner et al. 2017, etc.)
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Edson et al. 2013



Data-driven alternative for air-sea flux modeling
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• Data (NOAA PSL) 
• 10,000 samples from R/V  

• Hourly-averaged eddy-covariance   

• No high-fidelity numerical simulations yet :( 

• Method 
• Directly predict fluxes  

• Parametric distribution conditioned on inputs 

• Estimate of distribution parameters (mean and std) with 
neural networks

𝗐′ 𝗎′ , 𝗐′ 𝗏′ , 𝗐′ 𝖳′ , 𝗐′ 𝗊′ 

Nix and Weigend, 1994, Guillaumin and Zanna, 2021, Barnes et al., 2021, etc



Mathematical model
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• Assumption: conditional Gaussian dist.  

• For each flux two ANNs  

• Minimize negative log likelihood  
 

 

• Things that promote skills and prevent overfitting: 

• Choice of inputs  

• Training on MSE before log likelihood loss 

• Early stopping 

𝖫𝗇𝗅𝗅(θ, ϕ) =
𝖭

∑
𝗆=𝟣

𝟣
𝟤 [log(σ𝟤

ϕ(x𝗆)) +
(𝗒𝗆 − μθ(x𝗆))𝟤

σ𝟤
ϕ(x𝗆) ] + const .

X = (𝖴𝖺, 𝖳a, 𝖳o, 𝖱𝖧, 𝗉𝖺)

Mean

Std



Evaluating the statistical scores
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• Coefficient of determination 𝖱𝟤(�̂�, 𝗒) = 𝟣 − 𝔼[(�̂� − 𝗒)𝟤]/Var[𝗒]

ANN  

Baseline

Momentum flux Sensible heat flux Latent heat flux



Scores differ significantly across regions
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Momentum flux Sensible heat flux Latent heat flux

Wind speed Temp. Diff. Relative humidity

North 

Pac./Atl. 

7%

Southern 
Ocean


5%

Tropics

58%

Mixed

30%



Structure of predicted fluxes and uncertainty
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• Not strictly down-gradient  

• Limited by data (e.g. few high wind samples); extrapolate smoothly

 mean𝖰𝖲  std𝖰𝖲 Data density



Implementation in a single-column model of upper ocean
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• GOTM (General Ocean Turbulence Model) 

• Surface fluxes imposed as boundary condition (also affect 
vertical mixing parameterization) 

• Running the model in ‘forced’ way; fluxes computed offline; 
only modifying heat fluxes 

• Limitations (ignoring horizontal advection)
Vertical mixing: KPP or k-epsilon

Governing equations

ANN or BaselineLong-term mooring records of state variables  
No direct flux measurements 

Ocean Weather Station Papa 



Comparing heat flux time series
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Bulk algorithm #1 
Bulk algorithm #2

Summer Fall

Stochastically perturbed fluxes, noise generated by auto-regressive process AR(1)



Comparing state (SST and MLD)
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• Sea surface temperature (SST) and Mixed layer depth (MLD) diagnosis

ANN - baseline

A typical annual cycle



New flux model has a seasonal effect
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Response in SST

Response in MLD

Monthly-aver. 
heat flux diff.

2011, 2012, 2015, 2016

• There is a interplay with the vertical mixing. Not a simple heat budget balance.
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Smaller magnitude but seasonal response

Change flux 

Change mixing



Spread in ensemble members
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Spread in MLD

Spread in SST



Summary

• A probabilistic model for air-sea fluxes: 
• Compact ANNs and bulk inputs 

• Mean - similar to bulk algorithm, slightly better statistical 
correlation to observations 

• Variance - UQ and stochastic parameterization
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Manuscript: 
Wu, J., Perezhogin, P., Gagne., D.J., Reichl, B., Subramanian, A., Thompson, E., and Zanna, L., Data-Driven Probabilistic Air-
Sea Flux Parameterization, in prep. 

• Implementation in single-column forced upper ocean: 
• Strong seasonality in predicted flux difference and response  

• Limitation of single column model -> coupled CESM runs 

• Large spread can have additional impact when coupled to nonlinear processes
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