# Status of the ocean component in CESM3



Gustavo Marques gmarques@ucar.edu

In collaboration with: Alper Altuntas, Frank Bryan, Frederic Castruccio, Gokhan Danabasoglu, Ian Grooms, Kristen Krumhardt, William Large, Micheal Levy, Keith Lindsay, Manish Venumuddula

CESM OMWG, February 28, 2025

# **CESM "workhorse" configurations**

|                    | POP2                                                 | MOM6                                                                              |  |
|--------------------|------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| H. Grid            | 1.125° dipole w/ equatorial refinement               | 0.66° tripole w/ equatorial refinement                                            |  |
| V. Grid            | z-coord., dz = 10 m @ surface, 60 levels             | z*-coord. or hycom1* (z/isopyc), dz = 2.5 m @ surface, 65-75 levels               |  |
| Freshwater B.C.    | Constant volume, virtual salt flux                   | Variable mass, natural B.C                                                        |  |
| V. Mixing          | CVMix-KPP + Langmuir                                 | CVMix-KPP + Langmuir + Flux Profile<br>Mixing* + Stokes Similarity package*       |  |
| GM+Redi            | Marshall N <sup>2</sup> scaling                      | MEKE+GEOMETRIC scaling + EBT<br>vertical structure                                |  |
| Mixed Layer Eddies | Fox-Kemper et al. (2008, 2011), $L_f = 5 \text{ km}$ | Fox-Kemper et al. (2008, 2011), L <sub>f</sub> = 1<br>km + Bodner et al. (2023)** |  |
| H. Viscosity       | Anisotropic Laplacian                                | Isotropic Laplacian + Biharmonic, via<br>MEKE + LEITHY + backscatter**            |  |
| Solar penetration  | Ohlmann (2003)                                       | Manizza (2005), Ohlmann (2003)*                                                   |  |
| Advection          | 3 <sup>rd</sup> order upwind                         | Horiz. PPM, Vert. ALE w/ 3 <sup>rd</sup> order remapping                          |  |
| Other params       | Overflow, estuary box model                          | subgrid scale EOS correction, geothermal, estuary box model***                    |  |

\* new defaults \*\* inclusion is TBD \*\*\* won't be ready for CESM3

discussed today

### Mixed layer eddy (MLE) parameterizations

Streamfunction implemented in GCMs (FFH, Fox-Kemper et al., 2008, 2011):

- *C<sub>e</sub>* nondim 0.06-0.08
- $L_f$  frontal length scale
- H mixed layer depth
- *b* buoyancy
- f Coriolis parameter
- $\Delta s$  grid scale
- + au mixing time scale
- $\mu(z)$  vertical structure function

$$\Psi = C_e \frac{\Delta s H^2 \nabla_H \overline{b}^z \times \mathbf{z}}{L_f \sqrt{f^2 + \tau^{-2}}} \,\mu(z) \tag{1}$$

We have been using  $L_f = 1$  km in CESM/MOM6

**Bodner et al. (2023)** modified (1) to include frontogenesis arrest by boundary layer turbulence:

#### Scaling for frontal length

- $C_L \sim O(\text{Ri})$
- *u*<sub>\*</sub> frictional velocity
- h boundary layer depth
- *w*<sub>\*</sub> turbulent convective velocity
- *m*<sub>\*</sub> nondim 0.5
- *n*<sub>\*</sub> nondim 0.066
- $C_r = C_e/C_L$  tunable parameter

 $L_f = C_L \frac{\left(m_* u_*^3 + n_* w_*^3\right)^{2/3}}{f^2} \frac{1}{h},$ (2)

(1) becomes:

$$\Psi = C_r \frac{\Delta s \left| f \right| h H^2 \nabla_H \overline{b}^z \times \mathbf{z}}{\left( m_* u_*^3 + n_* w_*^3 \right)^{2/3}} \,\mu(z) \tag{3}$$

### Global meridional overturning: FFH vs Bodner



### Summer mixed layer depth (m): Bodner vs control

Model - obs



Weak restratification leads to excessive summer MLD deepening at low latitudes.

### Latitudinal dependency in Cr

$$\Psi = \underbrace{C_r(lat)}_{\left(m_*u_*^3 + n_*w_*^3\right)^{2/3}} \underbrace{\Delta s \left| f \right| h H^2 \nabla_H \overline{b}^z \times \mathbf{z}}_{\left(m_*u_*^3 + n_*w_*^3\right)^{2/3}} \mu(z) \tag{4}$$



6

### March mixed layer depth (m): Bodner + Cr(lat) V8 vs control



Model - obs

### September mixed layer depth (m): Bodner + Cr(lat) V8 vs control



Model - obs

### **Buoyancy Contribution to PV: AAIW & Mode Water Formation**



### **Comparing HYCOM1 Configurations**



In the following slides, case 42 has the old grid and case 43 has the new grid.

### **Vertical resolution at selected transects**



Let's inspect the vertical layer thickness along the lines highlighted in red.

### Layer thicknesses and target densities across Pacific



### Thicknesses and target densities across subpolar N. Atlantic



### Summer Mixed Layer Depth bias, 0.03 kg m<sup>-3</sup> criteria



Overall improvement.

### Winter Mixed Layer Depth, 0.03 kg m<sup>-3</sup> criteria



#### Overall improvement.

# **Atlantic Meridional Overturning Circulation (AMOC)**



0 1000 2000 <u>[</u>] Depth 3000 -6 -12 4000 -18 5000 RAPID 042 6000 043 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 AMOC @ 26N [Sv]

> Overall similar AMOC. 43 slightly stronger in the abyss (resolution near the bottom?).

#### **Denmark Strait Overflow**



### Denmark Strait Overflow: sigma2 @ sill



## Denmark Strait Overflow: sigma2 @ ~ 1400m

Vertical profiles @ depth ~ 1400 m 37.4 500 37.2 37.0 1000 36.8 1500 36.6 36.4 2000 36.2 2500 ò 10 12 14

- 43 slightly thicker;
- Denser plume in 42;
- Higher resolution at the plume interface in 42;
- More entrainment in 43.



### **Energy backscatter**

- Backscatter balances dissipation: The standard biharmonic viscosity dissipates energy, while a negative-viscosity Laplacian term backscatters energy to intermediate scales, avoiding grid-scale instabilities.
- Details provided in Grooms (2023), though within the context of a QG model;
- Backscatter is only applied where the computed Leith viscosity exceeds the background biharmonic viscosity, so it is mostly inactive in the 2/3° model.

#### **USE\_LEITHY = True** ! [Boolean] default = False

! If true, use a biharmonic Leith nonlinear eddy viscosity together with a harmonic backscatter.

#### **LEITH\_BI\_CONST = 78.0** ! [nondim] default = 0.0

! The nondimensional biharmonic Leith constant, typical values are thus far undetermined.

**LEITHY\_CK = 1.0** ! [nondim] default = 1.0

!Fraction of biharmonic dissipation that gets backscattered, in Leith+E.

### **Equatorial Under Current**



### Zonal velocity @ 180 W



Plots courtesy of Frank Bryan

### **Global meridional overturning circulation [Sv]**





Plots courtesy of Frank Bryan

### **Status of coupled simulations**

| Run | Compset | Description                                                                                                                                           | Nyrs | Issue      | Purpose of the run + comments                                        |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|----------------------------------------------------------------------|
| 125 | BLT1850 | Same as 122 but <b>revert ocn/Ind to a 121</b><br>to look at impact of <b>cam changes only (</b> all the upcoming<br>changes except moving mountains) | 53   | <u>#41</u> | New baseline with only cam changes<br>RESTOM went from 0.6->0.1 W/m2 |
| 127 | BLT1850 | Same as 125 + <b>new ocean settings</b><br>- vertical grid, MLE and topography<br>- start from Atlas                                                  | 25   | <u>#45</u> | Adding new ocean setting to 125                                      |

#### Mean SST bias (model - woa18), yrs 11-21

Temperature bias [C] at depth = 2.5 m (level = 0)

Temperature bias [C] at depth = 2.5 m (level = 0)



Overall pattern is similar. Warm bias in N. Pacific is reduced in 127. 127 is also warmer in the S. Pacific Gyre and Southern Ocean (Pacific sector).

### March mixed layer depth (m), yrs 11-21

125



127 is closer to obs in both hemispheres.

### September mixed layer depth bias (m), yrs 11-21

125

127

#### **Zonal average**



127 is closer to obs in both hemispheres (except @  $\sim$  5 N).

![](_page_26_Figure_1.jpeg)

Profile

Overall good AMOC in both cases. Flow reversal is deeper (and closer to RAPID) in 127.

#### **The ENSO Autocorrelation Problem**

![](_page_27_Figure_1.jpeg)

Plots courtesy of CESM3 dev team

### **Annual Mean Precipitation Standard Deviations**

![](_page_28_Figure_1.jpeg)

Plots courtesy of CESM3 dev team