# Constraining CMIP6/CESM2 sea ice simulations with ICESat-2

# Alek Petty<sup>1</sup>, Chris Cardinale<sup>1</sup>, Maddie Smith<sup>2</sup>





<sup>1</sup>ESSIC, University of Maryland, College Park, MD, USA <sup>2</sup>WHOI, Falmouth, MA, USA



### Future sea ice projections show wide inter-model spread



Figures by C. Cardinale; based on figures from SIMIP, 2020 and Roach et al., 2020

# Various sea ice assessment/calibration methods out there!

Model exclusion: SIMIP Community (2020)/IPCC AR6/Roach et al., (2020).

Model recalibration: Bonan et al., (2021), Kim et al., (2023), Topal and Ding (2023).

Model re-tuning !?: Kay et al., (2022)

Model weighting by plausibility? See less of that for some reason..?

Depends heavily on the ultimate goal (e.g. Notz et al., 2015).

# Integrate new observations from ICESat-2



#### **Pros:**

- Total freeboard observations are very precise, and across both hemispheres.
- Captures a lot of the thickness variability signal across basins.

#### Cons:

- Very short time period  $\rightarrow$  high internal variability?
- Need to consider coverage issues.
- Uncertain uncertainties, especially for thickness.

# Our goal: Integrate new observations from ICESat-2



coverage (that we discard)

# The freeboard/bulk ice density rabbit hole

- Direct ice freeboard output: ~15 models provide!
  - Add snow thickness to compare with total freeboard from ICESat-2.
  - Can derive bulk ice density by rearranging hydrostatic equilibrium Eq.

$$F_{i} = \frac{\rho_{w} - \rho_{i}}{\rho_{w}} H_{i} - \frac{\rho_{sn}}{\rho_{w}} H_{sn}$$
$$F_{total} = F_{i} + H_{sn}$$

• Can also derive bulk ice density from mass and volume variables!

Before we look at freeboard, we want to assess bulk ice density as a key variable in the freeboard conversion.

## The freeboard/bulk ice density rabbit hole



# Model plausibility: obs uncertainty and internal variability

Plausible range

$$P = +/-2\sqrt{(\sigma_{int}^2 + \sigma_{obs}^2)}$$

Plausibility index

$$\phi = \left| \overline{mod} + \overline{obs} \right| / \sqrt{(\sigma_{int}^2 + \sigma_{obs}^2)}$$

# Uncertainty estimates ( $\sigma_{obs}$ )

| Variable                                | Low uncertainty estimate | High uncertainty estimate |  |  |  |  |  |
|-----------------------------------------|--------------------------|---------------------------|--|--|--|--|--|
| Sea ice area (million km <sup>2</sup> ) | 0.5                      | 1.0                       |  |  |  |  |  |
| Total freeboard (cm)                    | 1.5                      | 3.0                       |  |  |  |  |  |
| Winter Arctic sea ice<br>thickness (cm) | 15                       | 30                        |  |  |  |  |  |

\*Heuristic (very educated guesses!) from synthesized lit review.

\*\*Apply the same values at the grid-scale too for regional assessments...

# Internal variability estimates ( $\sigma_{int}$ )

- Calculate for all models with at least 5 ensemble members.
  - Calculate for the 2018-2024 means but also multiple 7 year means across a wider 2015 to 2035 time-period.
  - Repeat for all metrics and time-periods.
- Can do similar calculations regionally too, but is even more questionable..



# Plausibility assessments (lots of them)



### Plausibility assessments (lots of them)



# **Plausibility across metrics**

- Models ranked by mean plausibility across all 15 metrics with CMIP6 mean listed at the top.
- More implausible SO results as expected but some quite plausible models!
- CESM2/CESM2-WACCM one of the better performing over both hemispheres.
  - Late summer low sea ice bias  $\bigcirc$ kinda evident in our metrics...

|                        |          | Arctic Ocean |                   |        |      |       | Southern Ocean |                 |      |       |        |       |      |        |   |     |
|------------------------|----------|--------------|-------------------|--------|------|-------|----------------|-----------------|------|-------|--------|-------|------|--------|---|-----|
|                        | Area     |              | Freeboard Thickne |        |      | SS    | Area Freeboard |                 |      |       | ard    |       |      |        |   |     |
| CMIP60.0               | 0 -0.3   | 0.5          | 0.1               | -1.8   | 0.2  | -0.2  | -0.8           | -0.1            | -2.4 | -3.2  | -1.3   | -3.0  | -2.2 | -4.3   |   |     |
| ACCESS-ESM1-50.8       | 3 -0.7   | -0.3         | -0.8              | -2.5   | -0.4 | -1.0  | -1.7           | -0.8            | -1.1 | -1.7  | -0.5   | -0.4  | 0.5  | 0.6    |   |     |
| TaiESM1 – 0.6          | 0.0      | 0.4          | 2.2               | 0.5    | 2.1  | 1.1   | 1.2            | 1.2             | -0.2 | -1.5  | -0.4   | 0.5   | 1.5  | -3.1   |   | c   |
| CESM2-WACCM - 0.2      | -1.3     | 0.5          | -1.0              | -2.7   | -1.2 | -0.9  | -1.6           | -0.8            | -0.4 | -1.6  | -0.7   | -0.7  | 0.0  | -3.3   |   | - 6 |
| NorESM2-LM - 0.7       | 0.2      | 0.6          | 0.2               | -0.1   | 0.0  | 0.6   | 1.3            | 0.6             | -3.0 | -4.6  | -0.8   | -3.0  | -2.1 | -0.9   |   |     |
| CESM2 - 0.2            | -1.7     | 0.8          | -1.0              | -3.0   | -1.0 | -0.9  | -1.7           | -0.8            | -0.8 | -2.0  | -0.9   | -1.0  | -0.2 | -3.5   |   |     |
| UKESM1-0-LL - 0.6      | 0.7      | 0.5          | 2.6               | 0.1    | 2.8  | 2.2   | 1.1            | 2.2             | -0.4 | -1.8  | 0.3    | 0.2   | 1.4  | -3.5   |   |     |
| MRI-ESM2-01.3          | 3 -2.1   | -0.3         | -1.5              | -3.5   | -1.5 | -1.9  | -2.5           | -1.6            | 1.8  | 2.5   | 0.3    | 0.0   | 0.7  | 0.3    |   |     |
| CanESM5 – -1.3         | 1 -0.6   | -0.8         | -0.2              | -0.9   | -0.2 | -0.6  | 0.2            | -0.8            | 2.1  | 1.5   | 2.1    | 3.2   | 3.7  | 3.7    | - | - 4 |
| GFDL-CM4 - 1.5         | 1.3      | 1.6          | 0.2               | -2.5   | 0.2  | -0.7  | -1.4           | -0.6            | -0.2 | 1.3   | -1.8   | -2.6  | -1.9 | -6.0   |   |     |
| CNRM-CM6-1 - 1.2       | 0.8      | 1.5          | -0.3              | -1.6   | -0.2 | -1.9  | -2.6           | -1.9            | -1.0 | 0.2   | -1.9   | -2.8  | -1.6 | -5.8   |   |     |
| FIO-ESM-2-02.0         | 0 -3.7   | -0.3         | -1.6              | -4.0   | -1.4 | -1.6  | -2.7           | -1.1            | -0.4 | -1.4  | -0.5   | 0.1   | 1.0  | -3.8   |   |     |
| CanESM5-10.8           | 3 -1.1   | -0.1         | -0.6              | -1.8   | -0.6 | -1.1  | -0.7           | -1.2            | 2.1  | 1.2   | 2.4    | 3.3   | 3.7  | 5.2    |   |     |
| IPSL-CM6A-LR1.2        | 2 -2.6   | 0.6          | -1.8              | -3.9   | -1.6 | -1.6  | -2.6           | -1.1            | 0.7  | 1.8   | -0.6   | 2.0   | 3.1  | -0.9   |   |     |
| ladGEM3-GC31-LL1.2     | 2 -2.8   | -0.2         | -0.8              | -4.2   | -0.5 | -0.9  | -3.0           | -0.5            | -1.8 | -3.4  | -1.0   | -1.7  | -0.4 | -4.6   | - | - 2 |
| ACCESS-CM2 - 0.8       | -0.3     | 1.8          | 1.2               | -1.6   | 1.1  | 1.0   | -0.8           | 1.1             | -2.5 | -3.1  | -1.9   | -3.1  | -2.1 | -5.7   |   |     |
| GFDL-ESM4 – -0.3       | 3 -0.3   | -0.6         | -1.0              | -3.4   | -0.9 | -1.4  | -2.5           | -1.2            | -1.8 | -1.4  | -1.6   | -3.9  | -3.3 | -5.6   |   |     |
| CNRM-CM6-1-HR - 0.8    | 0.4      | 0.9          | -1.1              | -2.2   | -1.4 | -2.1  | -2.8           | -2.1            | -1.9 | -1.3  | -2.2   | -4.2  | -3.2 | -6.4   |   |     |
| EC-Earth3-Veg – -0.1   | L 0.2    | -0.0         | 1.3               | 0.2    | 1.0  | 1.3   | 1.5            | 1.4             | -4.5 | -5.4  | -2.1   | -5.1  | -4.4 | -5.5   |   |     |
| MPI-ESM1-2-HR1         | / -2.0   | -0.9         | -0.4              | -3.3   | 0.2  | -0.8  | -2.4           | -0.6            | -3.4 | -2.8  | -2.2   | -4.1  | -3.3 | -6.4   |   |     |
| CNRM-ESM2-1 = 0.9      | -0.0     | 1.6          | -1.1              | -2.6   | -0.9 | -2.2  | -2.9           | -2.2            | -2.8 | -2.5  | -2.2   | -4.2  | -3.0 | -6.2   | - | - 0 |
| FGOALS-f3-L - 0.7      | -1./     | 2.3          | -0.4              | -3.0   | -0.1 | -0.4  | -1.8           | 0.0             | -3.9 | -3.5  | -2.3   | -5.1  | -4.0 | -6.5   |   |     |
| NorESM2-MM - 2.2       | 2.9      | 1.2          | 3.3               | 1.8    | 3.0  | 3.4   | 3.2            | 3.3             | -2.8 | -3.6  | -0.9   | -2.1  | -1.6 | -0.9   |   |     |
| EC-Earth30.            | L 0.4    | -0.1         | 11.7              | 0.4    | 1.4  | 11./  | 1./            | 1.8             | -4.6 | -5.7  | -2.2   | -5.4  | -4.7 | -5.8   |   |     |
| MPI-ESM1-2-LR1         | L -0.9   | -1.0         | 0.3               | -2.3   | 0.6  | -0.1  | -1.2           | -0.2            | -5.2 | -6.5  | -2.3   | -5.8  | -5.3 | -5.9   |   |     |
| EC-Earth3-CC0.         | -0.9     | -0.3         | -0.6              | -1.4   | -1.0 | -0.6  | -0.2           | -0.6            | -5.8 | -7.8  | -2.4   | -6.4  | -6.0 | -6.1   |   | 2   |
| KIUSI-ESM = 1.3        | 4.2      | -0.7         | 3.3               | 1.6    | 3.8  | 2.8   | 2.9            | 2.5             | -3.2 | -4.6  | -1.8   | -4.0  | -3.1 | -5.0   |   | 2   |
|                        | -3.1     | 4.9          | -2.0              | -5.2   | -1.0 | -1.8  | -3.8           | -1.4            | -2.0 | -2.5  | -2.0   | -4.2  | -3.1 | -6.6   |   |     |
| CAMS-CSMI-0 - 5.3      | 4.1      | 7.5          | 1.3               | -1.7   | 1.7  | 0.4   | -0.7           | 0.3             | -3.9 | -3.1  | -2.5   | -5.0  | -4.6 | -0.0   |   |     |
|                        | 3 -4.8   | -2.2         | -4.5              | -5.8   | -4.3 | -3.3  | -4.4           | -3.1            | -1.8 | -2.0  | -1.9   | -1./  | -0.4 | -0.3   |   |     |
| BCC-CSM2-MR = 3.1      | 1.3      | 4.5          | -1.4              | -3.9   | -1.2 | -1./  | -2.7           | -1.9            | -4.3 | -0.3  | -2.2   | -5.9  | -5.7 | -0.0   |   |     |
|                        | 1 0 0    | -0.0         | -2.9              | -5.5   | -2.7 | 1 2.9 | 10             | 1.0             | -4.0 | -0.2  | -2.4   | -4.0  | -3.5 | -0.4   |   | 4   |
|                        | + 0.0    | -2.9         | 5.4               | 1.1    | 5.0  | 1.2   | 1.0            | 1.0             | -7.4 | -11.5 | 2.4    | -1.2  | -7.5 | -0.5   |   |     |
|                        | 2 1 1    | 2.0          | -5.4              | 1.0    | -5.4 | -4.2  | 1 0            | 2.6             | 77   | -2.7  | 2.0    | 7.5   | -0.7 | 6.6    |   |     |
| FC-Farth3-Vog-LR = 2.3 | 3 0      | -2.0         | 5.6               | 1.0    | 5.0  | 2.5   | 1.9            | 2.0             | -1.6 | 5 4   | 2.4    | -7.5  | -1.7 | -0.0   |   |     |
|                        | 2 1 6    | -2.4         | 1.6               | 3.2    | 5.1  | 3.5   | 3.5            | 3.4             | -4.0 | -11.2 | -2.2   | -7.0  | -4.5 | -5.5   |   |     |
| CanESM5-CanOE = -1     | 3 -0.9   | -0.8         | 4.0               | 5.2    | 5.1  | 5.4   | 5.0            | J.2             | 1 9  | 13    | 1 9    | 7.0   | 7.0  | 0.4    |   |     |
| INM-CM5-00 (           | 14       | -0.5         | (                 |        |      | i .   |                |                 | -3.3 | -4 4  | -1.6   |       |      |        | - | 6   |
| EGOALS-03 - 3 0        | 5 2      | 24           | i                 |        |      |       |                |                 | 10   | 19    | 0.1    |       |      |        |   |     |
| INM-CM4-8 - 2 8        | 3.7      | 27           |                   |        |      |       |                |                 | -5.0 | -6.9  | -2.2   |       |      |        |   |     |
|                        |          | 1            | · .               | 1      | 1    | ' i . | 1              | 1               | 5.0  | 0.5   | 1      | ' I - | 1    | 1      |   |     |
| AII                    | eb       | lar          | All               | eb     | lar  | All   | eb             | lar             | All  | eb    | lar    | A     | eb   | lar    |   |     |
| Ξ                      | 4 S      | 2<br>T       | ≤                 | ∆<br>N | 2    | ⊻     | ∆ S            | ≥<br>⊲          | Ξ    | + S   | ≥<br>⊤ | Ξ     | - S  | ≥<br>⊤ |   |     |
| ∠ ⊲                    | ź        | ż            | B                 | 2      | 2    | μ     | 1              | 1<br>⊥          | Ā    | S     | S      | 8     | S    | SF     |   |     |
| SIJ                    | SIA      | SIA          | F                 | Ē      | TFI  | (U)   | SI.            | SI <sup>-</sup> | SI   | SIA   | SIA    | Ħ     | EB   | ΓEB    |   |     |
|                        | <b>.</b> | ~ ~ ~        |                   |        |      |       |                |                 |      |       |        |       |      |        |   |     |

Plausibility Index

Had

# Impacts of our constraints



### Future sea ice area projections



# Regional sea ice assessments

- Implausible regions highlighted by hatchings.
- Lots of good performing models still struggle with the thicker ice north of CAA.
- How much should we trust the regional internal variability estimate though?
- More regional assessments including composite analysis included in the paper!





# **Discussion points**

- Bulk ice density estimates in models and obs a little confusing and need more focused examination
- Better uncertainty quantification, ideally observational ensembles, would really help with this kind of assessment.
- Internal variability estimates, especially for this short time-period, are more questionable, but at least less trend contaminated!
  Even more so for regional analyses.
- How best to combine with existing recalibration methods for improving predictions!?

# Some next steps

- Interested in decadal-scale predictions with our plausibility subsets and different exclusion/weighting/recalibration schemes, ideally with community/SIMIP involvement!
- Bring in ICESat-OG data (working on a reprocessing, hoping to tackle representation issues, get in touch if interested).
- Looking into more melt-focussed metrics through our new NASA Cryo project (melt pond fraction/albedo etc).