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Motivation

If the grid cell mean albedo is okay, why does it matter if pond area
and albedo are inconsistent with observations?

1. No guarantee that errors will offset in different sea ice states.

1. Errors limit our ability to improve realism (e.g., cannot use DA for
pond area if we need an incorrect pond area to offset albedo bias).

1. Albedo isn’t the whole story (i.e., light transmission to the upper
ocean).



Agenda

* Motivation

* Lifecycle of a melt pond

* Updates to pond geometry

e Updates to ponded ice optical properties

* Impacts in standalone and coupled models



Lifecycle of a melt pond

Photos: N. Wright (left), J. Delamere (right)



Lifecycle of a melt pond

Observations

|

Meltwater fills depressions
on impermeable ice creating
above-freeboard ponds.

Low-albedo ponds
accelerate melt, lowering
pond base below freeboard.

!

Drainage through flaws and
percolation lowers pond
surfaces to freeboard.
~20-40% pond coverage

1

Pond surfaces remain at
freeboard until refreezing or
ice disintegrates.
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Stage I: snow melt,

lateral meltwater transport
dominates, drainage

through flaws with underwater
ice formation

Stage II: snow cover removed,
lateral and vertical meltwater
transport, steady reduction of
hydraulic head, flaws enlarged

Stage III:

vertical and lateral meltwater
transport, hydraulic head highly
reduced, flaws enlarged to point
of ice desintegration, convective
overturning

Stage T'V:

ponds freeze over, snow
deposition at surface, bottom
melting may continue (incl.
potential melt-back of false
bottoms)
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Melt ponds in Icepack

Observations

Meltwater fills depressions
on impermeable ice creating
above-freeboard ponds.

Icepack currently

Ponds are perched above the
ice surface and exponentially
decay.

Low-albedo ponds
accelerate melt, lowering
pond base below freeboard.

1

Pond area and depth grow
by fixed ratio. Drainage only
reduces depth.

Drainage through flaws and
percolation lowers pond
surfaces to freeboard.
~20-40% pond coverage

Pond surfaces remain at
freeboard until refreezing or
ice disintegrates.
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percolation drainage
assumes perched ponds.
A A If pond mass would depress

ice locally below freeboard,
instantaneous drainage.




Proposed changes

1.

1.

Icepack proposed

Explicitly represent hypsometry
-> controls depth-area changes
and enables sea level ponds.

based on target sea level area
fraction and isostatic balance.

Exponential drainage driven by
pressure head.

Pressure head computed from
hypsometry.

Freeboard constraint applied to
entire category.

Icepack proposed

Pond area, depth, and
pressure head depend on
linear hypsometry.

Drainage reduces both depth
and area based on
hypsometry

Percolation and macroscopic
drainage depend on pressure
head.

RS

Category has nonnegative
buoyancy. Ponds can be
locally below freeboard.
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Proposed Changes

Assume linear hypsometric curve which is a function of ice thickness,
such that when pond surface is at sea level, pond area is constant.
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Pond optical properties
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Sealvl ponds in Icepack simulations
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Not climate-changing in standalone test

CICE Mean Ice Thickness
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CESM3 Impacts

Month 7
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Conclusions

Sealvl ponds improves physical realism of pond processes without
degrading the albedo evolution in standalone simulations.

Preliminary results suggest larger impacts in coupled simulations.

There are many future opportunities for enhancements (notably
drainage and phases 1&2 of pond evolution).

Contact: davidclemenssewall@gmail.com
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Elevation (m a.s.l.)
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Lifecycle of a melt pond

Observations
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Icepack currently

Ponds are perched above the
ice surface and

_exponentially decay.

Pond area and depth grow

by fixed ratio. Drainage only
reduces depth.

The pressure head for
percolation drainage

—tassumes perched ponds.

If pond mass would depress
ice locally below freeboard,

instantaneous drainage.
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Freeboard Constraint

Existing parameterization
Lines 217-218 in icepack_meltpond_Ivl.F9O0:

I'limit pond depth to maintain nonnegative freeboard
hpondn = min(hpondn, ((rhow-rhoi)*hi - rhos*hs)/rhofresh)

Where hi and hs are category mean ice and snow thickness
respectively, but hpondn is the meltwater thickness just over
the ponded area, not average melt pond thickness over the
entire category.

Algebraically rearrange line 218:
rhofresh*hpondn <= rhow*hi - rhoi*hi - rhos*hs
rhofresh*hpondn + rhoi*hi + rhos*hs <= rhow*hi

The left hand side of this equation is the mass of a column of
ice, snow, and pond, per m? of ponded area. Right hand side is
the mass of a column of displaced sea water if the ice surface
were at freeboard.

Proposed parameterization

dhpondn = min(cO, ((rhow-rhoi)*hi - rhos*hs)/(rhofresh*apondn) - hpondn)

Where apondn is the category pond area fraction (aka. apndn*alvin). We've
switched to computing a pond depth change, instead of directly modifying
hpondn. Assuming in the next step that we will update hpondn by adding
dhpondn, this is equivalent to:

hpondn = min(hpondn, ((rhow-rhoi)*hi - rhos*hs)/(rhofresh*apondn))
Same algebraic rearrangement as before yields:
rhofresh*hpondn*apondn + rhoi*hi + rhos*hs <= rhow*hi

The left hand side of this equation is the mass of a column of ice, snow, and
pond, per m? of category area. Note that multiplying the pond mass per unit
ponded area by the category pond fraction is equivalent to the pond mass
per unit category area (i.e., averaging together the ponded and unponded
areas of the category). Because the mean ice and snow thicknesses are
assumed to be identical on the ponded and unponded areas of the category,
changing the pond mass to be per unit category area is the only change we
need to make the freeboard constraint over the entire category.




Rfrac parameterization

Existing parameterization
Lines 144-151 in icepack_meltpond_Ivl.F9O0:

if (use_smlig_pnd) then
dvn = rfrac/rhofresh*(meltt*rhoi + meltslign)*aicen
else
dvn = rfrac/rhofresh*(meltt*rhoi + melts*rhos + frain* dt)*aicen
endif
Where ‘rfrac’ comes from line 2759 in icepack_therm_vertical.F90:

rfrac = rfracmin + (rfracmax-rfracmin) * aicen(n)
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NH Annual Mean Hemispheric Integrated Timeseries

5
CESM1-LENS
] CESM2-LENS
o 4 —— b.e30_beta04.BLT1850.ne30_t232_wgx3.121pond
'"E —— b.e30_beta04.BLT1850.ne30_t232_wgx3.121
) i v N/
5 ’ M iml DT\ W\
3
>
= . M\N/\,W
g
o
s
T 17
=
0 T T T T
0000 0060 0120 0180
Year
0.5
CESM1-LENS
" CESM2-LENS
o 84 —— b.e30_beta04.BLT1850.ne30_t232_wgx3.121pond
m’E‘ —— b.e30_beta04.BLT1850.ne30_t232_wgx3.121
o 0.3
£
=]
S
2 02
o
=
w0
T 011
00 T T T T
0000 0060 0120 0180
Year
25
CESM1-LENS
N CESM2-LENS
5 20 —— b.e30_beta04.BLT1850.ne30_t232_wgx3.121pond
Y —— b.e30_beta04.BLT1850.ne30_t232_wgx3.121
E 15
]
L
< WW
S 10
m©
(7]
2]
Z 51
0

0000 0060 0120 0180
Year




Sea Ice Area m?x1012

NH Climatological Seasonal Cycle
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Sea Ice Volume m3x1013
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