Machine-learned sea ice bias correction in a global fully-coupled climate model

Polar Climate Working Group Meeting, March 4th

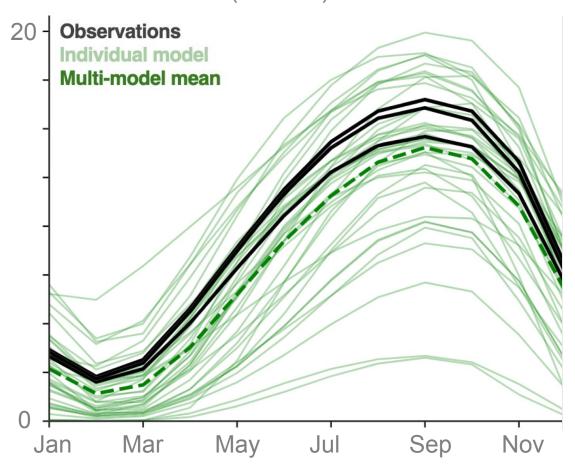
Will Gregory¹, Mitch Bushuk², Yong-Fei Zhang¹, Alistair Adcroft¹, Laure Zanna³

¹ Princeton University, Atmospheric and Oceanic Sciences
² NOAA Geophysical Fluid Dynamics Laboratory
³ New York University, Courant Institute

Additional thanks to the M²LInES team

Climate models (CMIP6) show significant spread in the sea ice mean state

Climatology of Antarctic sea ice area over 1979 – 2014 – **individual models are biased**



Antarctic sea ice area (10⁶ km²)

Roach et al. Antarctic sea ice area in CMIP6. *GRL*. 2020.

Sea ice biases have implications for the future projections

100 Internal Forcing certainty (%) Model JL 2080 2020

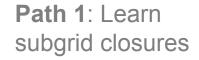
Bonan et al. Partitioning uncertainty in projections of Arctic sea ice. *Environmental Research Letters.* 2021.

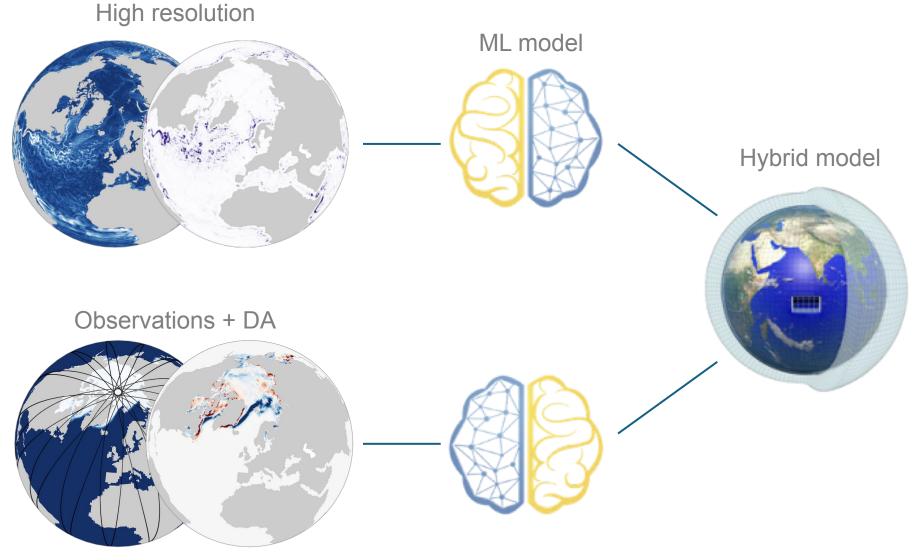
Errors in model physics contribute up to 70% of the uncertainty in mid-century sea ice projections

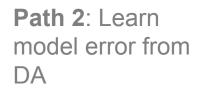
M²LINES aims to improve climate model biases at the air-sea interface through data-driven model physics

September Arctic sea ice area

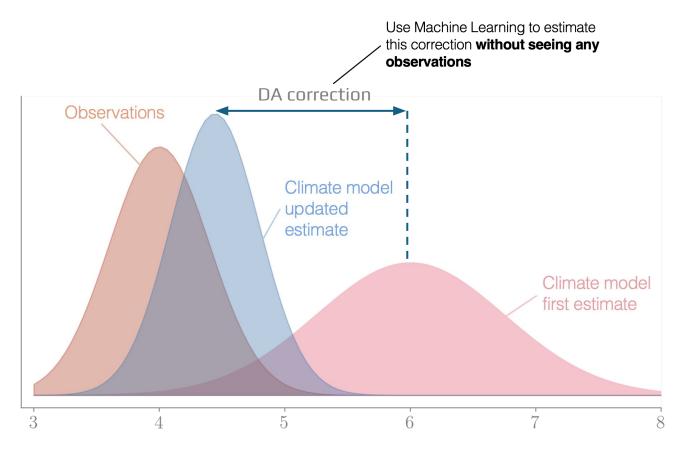
M²LInES aims to improve climate models through data-driven parameterizations



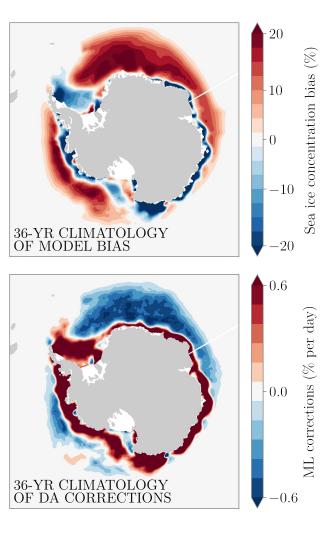




Fast-physics errors can mirror the systematic model bias

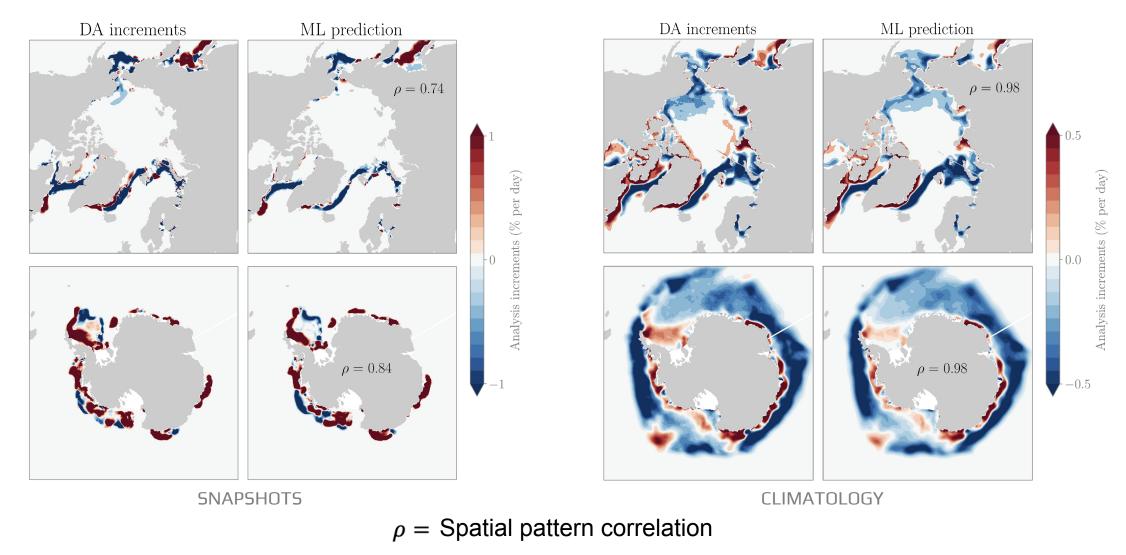


Gregory et al. Deep learning of systematic sea ice model errors from data assimilation increments. *JAMES*. 2023



JRA-forced global ice-ocean simulations

High (OFFLINE) skill shows sea ice model errors are largely state-dependent



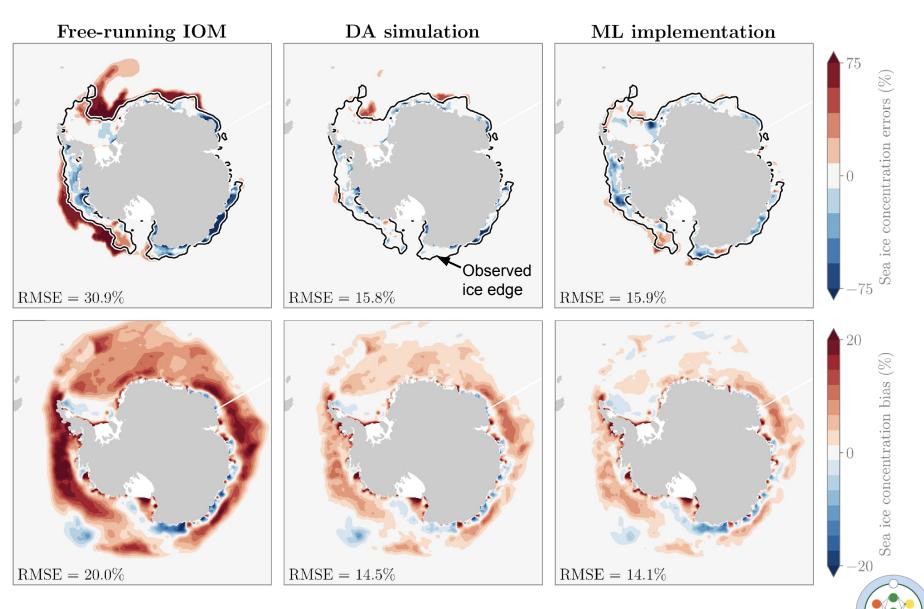
Gregory et al. Deep learning of systematic sea ice model errors from data assimilation increments. JAMES. 2023

Correcting ice-ocean simulations with ML model can significantly reduce model error

SNAPSHOTS

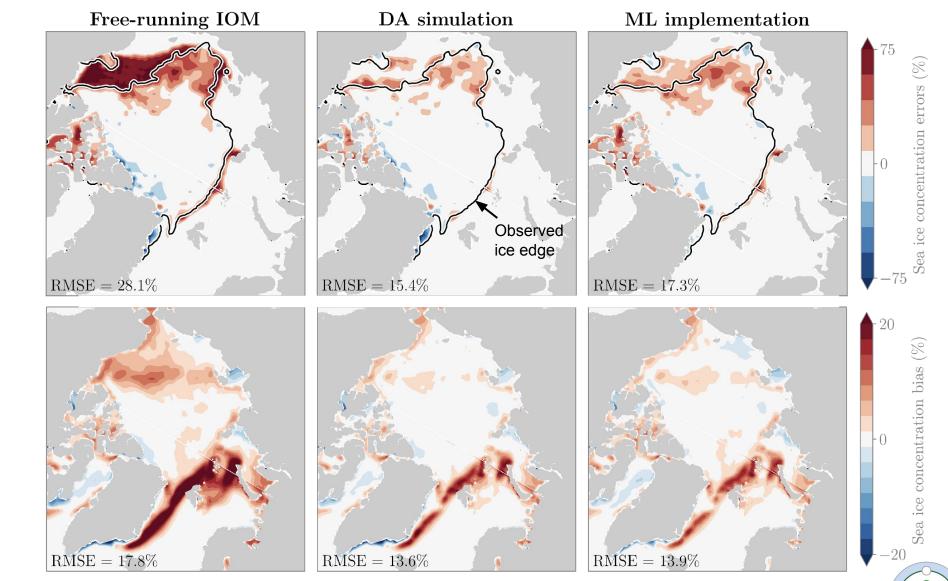
ML model emulates the DA process (without the need for observations)

CLIMATOLOGY



Gregory et al. Machine learning for online sea ice bias correction within global ice-ocean simulations. GRL. 2024

Correcting ice-ocean simulations with ML model can significantly reduce model error



SNAPSHOTS

ML model emulates the DA process (without the need for observations)

CLIMATOLOGY

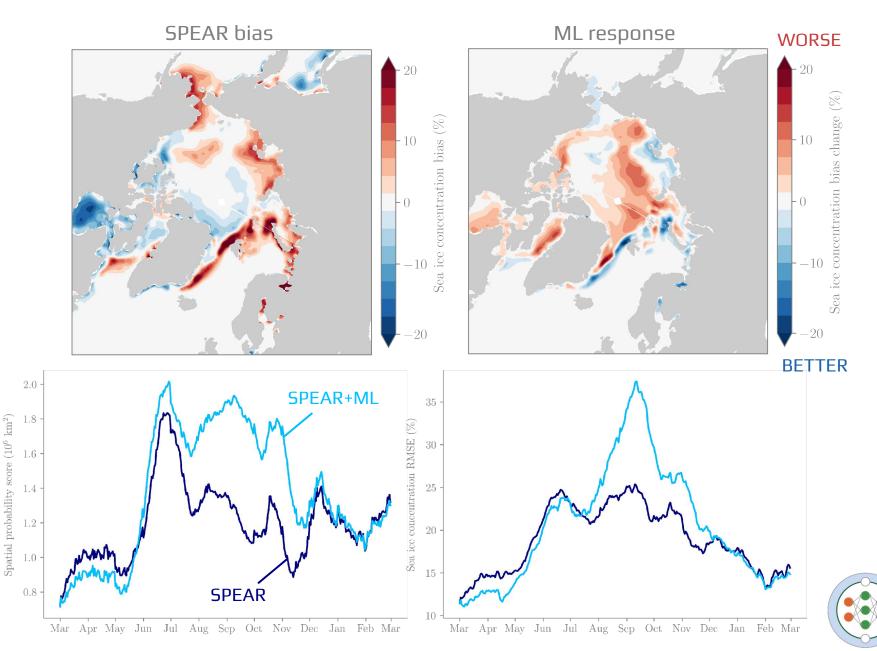
Gregory et al. Machine learning for online sea ice bias correction within global ice-ocean simulations. GRL. 2024

Fully-coupled global reforecasts, with SPEAR (work in progress)

March initialized reforecasts are degraded 🙁

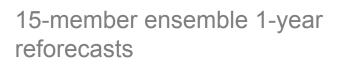
15-member ensemble 1-year reforecasts

Free-running atmosphere and ocean

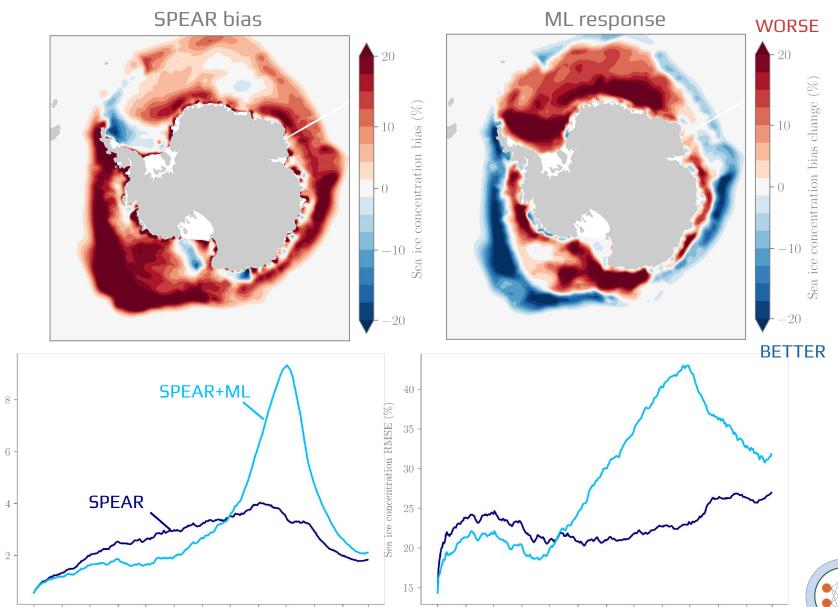


March initialized reforecasts are degraded 🙁

Spatial probability score (10^6 km^2)

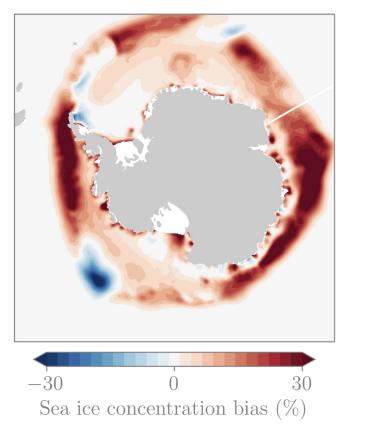


Free-running atmosphere and ocean



Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Hypothesis: we need to include the coupled atmospheric feedbacks in the training



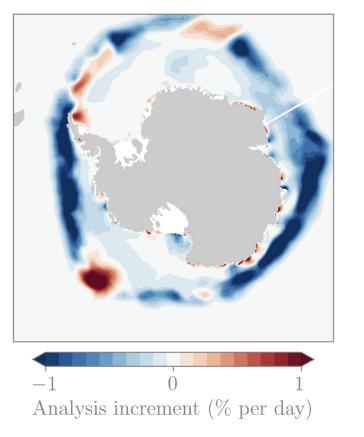
Forced atmosphere bias

Strongly nudged atmosphere bias



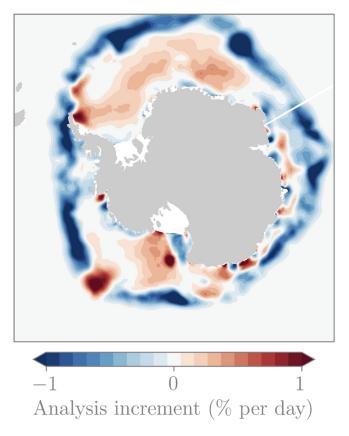
Simulations with the same ice and ocean configuration

Hypothesis: we need to include the coupled atmospheric feedbacks in the training



Forced atmosphere DA increments

Strongly nudged atmosphere DA increments

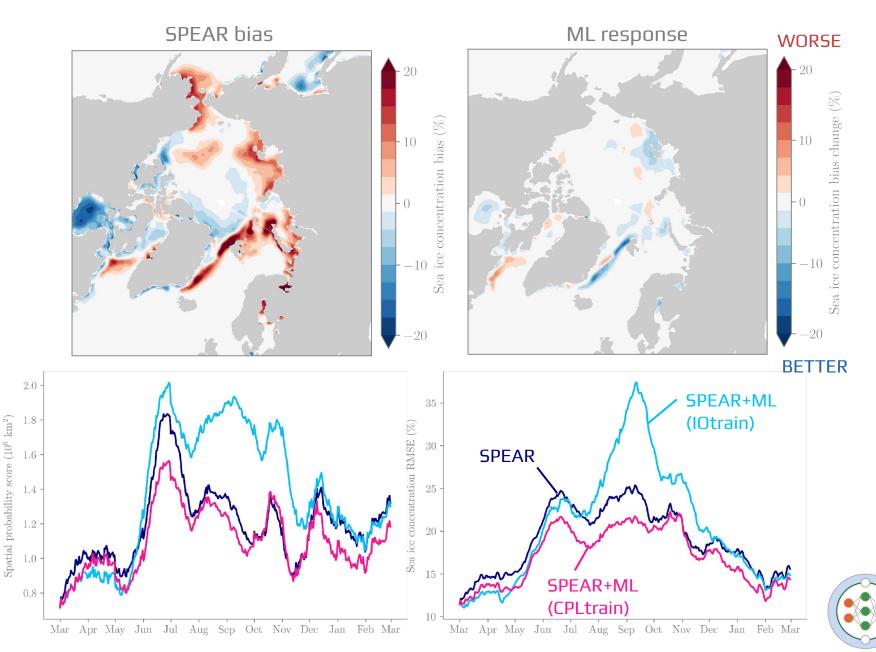


Simulations with the same ice and ocean configuration

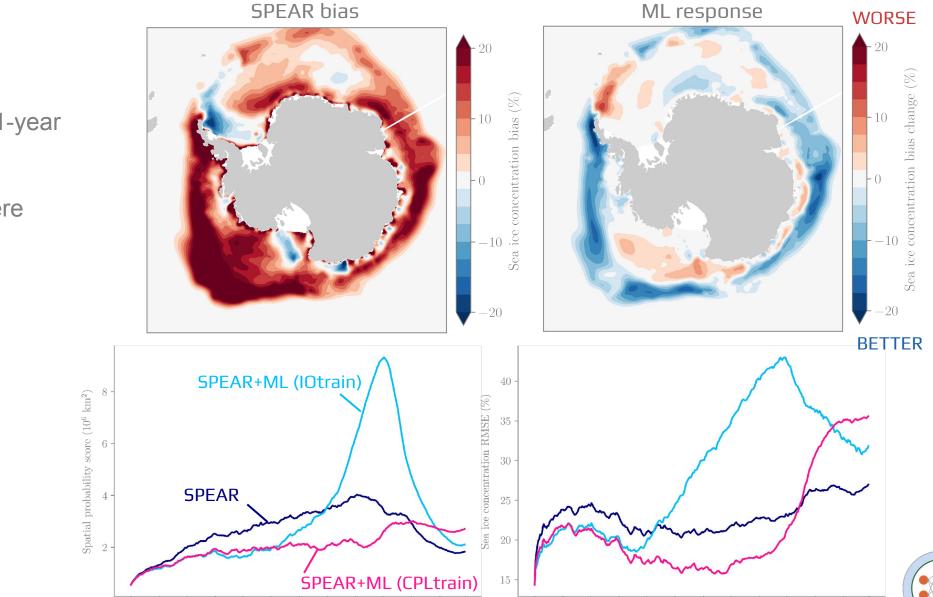
March initialized reforecasts are improved 😌

15-member ensemble 1-year reforecasts

Free-running atmosphere and ocean



March initialized reforecasts are improved (mostly!)

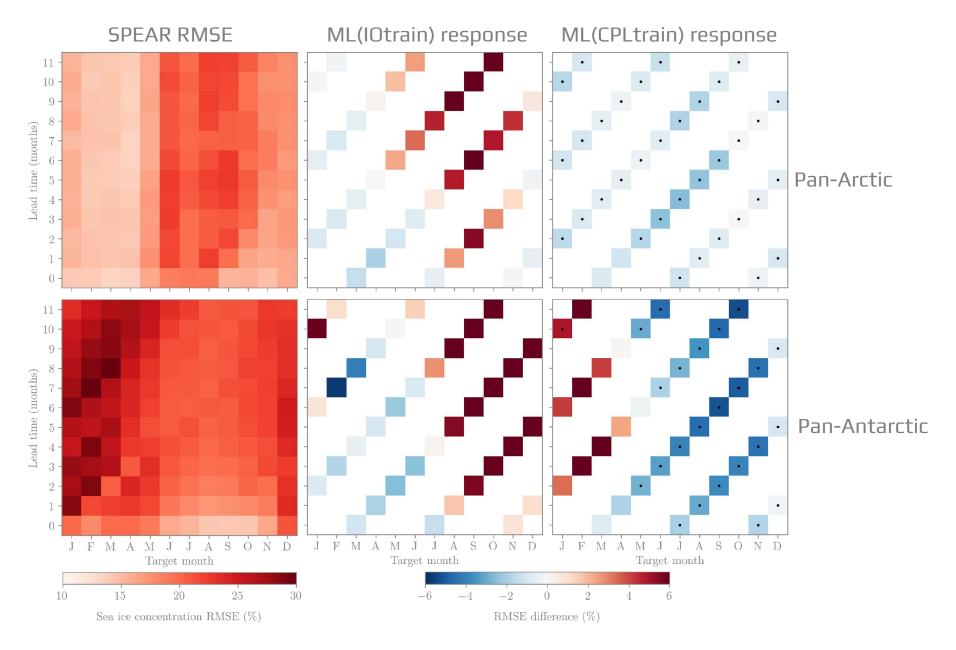


15-member ensemble 1-year reforecasts

Free-running atmosphere and ocean

6

Coupled training improves forecast skill on average



From SPEAR to CESM

Getting this workflow up and running in CESM should be straightforward!

Step 1: Do Data Assimilation

https://github.com/William-gregory/DA-ML/blob/main/Kalman_Filter/EAKF_sequential_mpi.py

Step 2: Train ML model

https://github.com/William-gregory/DA-ML/blob/main/offline_learning/final_network.py https://github.com/William-gregory/DA-ML/blob/main/NNetwork.py

Step 2: Implement network into CICE

https://github.com/William-gregory/SIS2/blob/ML_pure_fortran/src/SIS_ML.F90

Also chat to Will Chapman! He has implemented this workflow for atmospheric bias correction in CESM

