Isolating the Contribution of Observed Winds to Recent Arctic Warming and Sea Ice Loss

NCAR PCWG Meeting 2025 March 3rd, 2025

Ash Gilbert^{1,2}, Jen Kay^{1,2}, Edward Blanchard-Wrigglesworth³, Alexandra Jahn^{1,4}, David A. Bailey⁵, Marika M. Holland⁵, and David Schneider²

¹Atmospheric and Oceanic Sciences, University of Colorado-Boulder

²Cooperative Institute for Research in Environmental Sciences

³Atmospheric and Climate Science, University of Washington

⁴Institute for Arctic and Alpine Research

⁵Climate and Global Dynamics Laboratory, NCAR

UNIVERSITY of VASHINGTON

Figure 1. Arctic (70-90 °N) and Global warming (left) and Arctic Amplification (right). Values for individual members and ensemble mean (EM) of the CESM1 Large Ensemble (*Kay et al. 2015*) and for observations (*GISTEMP Team, 2021*).

Motivation	Methods Results Discussion				Conclusions
Ot observe	udging: nudging m ed winds to production in a model	odel winds to e the observed	he ctic	Wind obse ice lo 0 60 ciu	l contribution to erved September sea oss: 0% from summertime rculation

20-25% from observed circulation

Observations

a September sea ice

Ding et al. 2017.

Nudged

Roach and Blanchard-Wrigglesworth 2022.

Research Questions

What is the influence of the observed winds alone on:

- 1) Observed Arctic warming and sea ice loss trends and interannual variability
- 2) Seasonal temperature and sea ice area trends
- 3) Local trends in temperature and sea ice

How do those results change for an increase in mean state sea ice thickness?

Experiment set-up

- CESM version 2.1.5
- Pre-industrial climate (B1850cmip6)
- Nudged model U & V wind components with 6-hourly ERA5 reanalysis from 1950-2023 for 60-90°N and above 850 hPa

Motivation	Methods		Results	Discussion	Conclusions
Dataset name	Ensemble members	Additional n	otes	Purpose	
OBS	-	ERA5 for ter GISTEMP for only	nperature & sea ice; r temperature anomalies	Benchmark for perfor wind-nudged experin	mance of nents
CESM2-PI	51	Ensemble cr long random pre-industria	eated from 51 74-year slices of CESM2 I control	Baseline for pre-indus internal variability	strial climate &
Plnudge	3	Default wind climate expe	-nudged pre-industrial eriment	Quantifies contribution observed warming &	on of winds alone to sea ice loss
Plnudge-lessmelt	3	Includes sea modification ice (Kay et a	ice lessmelt s generating thicker sea I. 2022)	Quantifies contribution mean state increase i	on of winds plus a In sea ice thickness

Arctic Temperature Trends & Variability

Motivation	Methods	Results	Discussion	Conclusions

Annual Arctic (70-90°N) temperature

Motivation	Methods	Results	Discussion	Conclusions

Annual Arctic (70-90°N) temperature trends

Motivation	Methods	Results	Discussion	Conclusions

Winds alone <u>cannot</u> reproduce observed annual and monthly warming

Winds alone <u>can</u> explain 24% of interannual variability and seasonal patterns of warming

Warming is independent of mean state sea ice thickness

Arctic Sea Ice Area Trends & Variability

Motivation	Methods	Results	Discussion	Conclusions

September sea ice area

	Motivation	Methods	Results	Discussion	Conclusions
--	------------	---------	---------	------------	-------------

March sea ice area

Motivation	Methods	Results	Discussion	Conclusions

Atlantic Meridional Overturning Circulation (AMOC)

	Motivation Methods Results	Discussion	Conclusions
--	----------------------------	------------	-------------

Winds alone <u>cannot</u> reproduce observed September, March, and monthly sea ice loss

Winds alone <u>can</u> explain 12% to 1% of interannual variability and seasonal patterns of sea ice loss

Sea ice loss is independent of mean state sea ice thickness

Local Temperature & Sea Ice Trends

Motivation	Methods	Results	Discussion	Conclusions
Sea Observations	SON MAM a)	JA SON c) c)	DJF d)	eud (K/decade) 1.5 1.0 5
Pattern correlation with OBS	e) r = 0.71 Stippl trend signific confic with re CESM	ng indicates is statistically cant at 95% ence level espect to 2-Pl	h) r = 0.55	0.0 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -

Motivation	Methods	Results	Discussion	Conclusions
Winds drive loc warming in	ation of strongest every season			
	MAM JJA a) b)	SON c)	DJF d) Warm cold E	Arctic urasia
OBS (ERA5)				2.5 (epecade) 2.0 2.1 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Plnudge	e) r = 0.71	g) r = 0.64	h) x = 0.55	0.0 -0.5

Motivation	Metho	ods	Results	Discussion	Conclusions
Plnudge	MAM e) r = 0.71	JJA f) r = 0.39	SON g) r = 0.64	DJF h) $r = 0.55$	trend (K/decade) 2.5 2.0 1.0 1.0 2.0
Plnudge-lessmelt	e) r = 0.73	f) r = 0.39	g) r = 0.64	h) r = 0.48	- 0.0 0.5

Motivation	Methods	Results	Discussion	Conclusions
Plnudge	MAM e) r = 0.37 f)	JJA SON r = 0.38 g) r = 0.00	DJF h) $r = 0.61$	n trend (%/decade)
Plnudge-lessmelt	e) r = 0.37 f)	g) r = 0.01	h) r = 0.48	-30 Sea ice concentratio

Motivation	Methods	Results	Discussion	Conclusions

Winds alone <u>cannot</u> reproduce the magnitude of local warming and sea ice loss

Winds alone <u>drive</u> regional patterns of warming, and to a lesser extent, sea ice loss

Local warming & sea ice loss are independent of mean state sea ice thickness

Current work

- Add Plnudge-moremelt experiment explore mean state sea ice thickness for thinner sea ice
- Investigating which parameter combination is best for moremelt pre-industrial control

Run name	CICE Namelist modifications	Run duration
moremelt	r_snw = 1.0	250 years
moremelt_dtmlt	r_snw = 1.0 dt_mlt = 2.0	100 years
moremelt_psi	r_snw = 1.0 dt_mlt = 2.0 r_ice = -1.0 r_pnd = -1.0	50 years (+50 years yet to be processed)
moremelt_rsnw0	r_snw = 0.0	50 years (+50 years yet to be processed)

Current work

Conclusions

- Observed winds fail to reproduce the magnitude of recent (1980-2023) Arctic warming & sea ice loss
- Observed winds partially reproduce the interannual, seasonal, and spatial variability of Arctic temperature & sea ice
- In summary, observed winds drive Arctic variability but not long term trends
- Our results are independent of mean state sea ice thickness

Members with atmospheric circulation closer to observations reproduce observed sea ice loss better

Motivation		Me	ethods	Results	Discussio	Discussion	
300 hPa	a)	MAM	b) JJA	c) SON	d) DJF	1. 1. 0. 0. -0. -1	trend (m s ⁻¹ /decade)
500 hPa	a)	MAM	b) JJA	c) SON	d) DJF	1. 1. 0. 0. -0. -1	trend (m s ⁻¹ /decade)

Motivatior	ו	Me	ethods	l	Results		Discussion	1	Conclusions
850 hPa	aj) MAM	b) JJA		c) SON	and the second sec	d) DJF	1. 1. 0. -(-	2 0 5 0 5 0 2 0 2 0 1 2 2 2 0 1 2 1 2 2 0 1 2 1 2
925 hPa	aj) MAM	b) JJA		c) SON	Contract Contraction	d) DJF	1. 1. 0. -(-	2 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0

Motivation	ı	Me	ethods		Results		Discussion		Conclusions
300 hPa	a)	MAM	b) JJA	Start C	c) SON	Start C	d) DJF	1.4 1.0 0.4 -0 -1 -1	Trend (m s ⁻¹ /decade)
500 hPa	a)	MAM	b) JJA		c) SON	Creating Contraction of the cont	d) DJF	1.4 1.0 0.4 0.0 -0 -1 -1	Firend (m s ⁻¹ /decade)

Motivation		Me	ethods	Resu	ults	Discus	ssion	Conclusions
850 hPa	a) MAM	b) JJA	c) So	ON Contractions of the second	d) DJF	1. 1. 0. -0. -1	Trend (m s ⁻¹ /decade)
925 hPa	a) MAM	b) JJA	c) S(NC Contraction of the second s	d) DJF	1. 1. 0. -0. -1 -1	Trend (m s ⁻¹ /decade)

MotivationMethodsResultsDiscussion	Conclusions
------------------------------------	-------------

Wind nudging in practice...

Motivatio	n	Methods	5	Res	sults	D	iscussion	C	onclusions
	Experime	nt name	Initial con	dition	Physics/Namel changes	ist	Ensemble members	Experiment type	
	PiC_UVnu	ıdge	Year 501 o piControl	of CESM2			3	Spin-up	
	PiC_UVnu	Idge_LM	Year 1181 of CESM2les piControl	of ssmelt	Lessmelt CICE	mods	3	Spin-up	
	PiC_UVnu (i.e. Plnud	ıdge_2006 ge)	Year 2006 PiC_UVnu	6 of Idge			3	Science	
	PiC_UVnu (i.e. Plnud	idge_LM2006 ge-lessmelt)	Year 2000 PiC_UVnu	6 of udge_LM	Lessmelt CICE	mods	3	Science	
	PiC_UVnu	Idgenew	Year 501 o piControl	of CESM2	New nudging p	hysics	1	Drift	
	PiC_UVnu	ıdge_1988	Year 1988 PiC_UVnu	of Idge mem. 3			1	Drift	
	PiC_UVnu	idge_2006_2000	Year 2000 PiC_UVnu mem. 1) of ıdge_2006			1	Drift	

Motivation	Methods	Results	Discussion	Conclusions

Global mean temperature

Motivation	Methods	Results	Discussion	Conclusions
	•			

Full initial condition tree

Motivation

Methods

Results

Discussion

Cycling atmospheric forcing in ocean models removes model drift

Drift: cycling wind nudging reduces the temperature trend

Each box is one cycle of atmospheric forcing

Signal: cycling wind nudging has no effect on the temperature trend

Motivation	Methods	Results	Discussion	Conclusions

Motivation	Methods	Results	Discussion	Conclusions

